Analysis of heart morpho-functional parameteres and myocardial injury biomarkers during anthracycline chemotherapy
Anthracycline antibiotics are widely used in cancer treatment. Cardiotoxic (CT) side effects limit their using. The purpose of the study was to evaluate the echocardiographic parameters, troponin I and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels dynamics in different age groups, receiving anthracycline chemotherapy (cumulative doxorubicin dose of 250 mg/m2). The study included 155 patients with hemoblastosis, treated with anthracyclines. Patients were divided into two groups on the age principle – the 1st group involved 67 patients aged from 18 up to 44 years, the 2nd – 88 patients aged from 45 up to 74 years. NT-proBNP and troponin I levels, echocardiographic examination were performed twice: at baseline and after chemotherapy. As a result of the study, it was revealed that the anthracycline treatment at a cumulative doxorubicin-equivalent dose 250 mg/m2 didn't lead to heart structural parameters changes – there were no significant (p > 0,05) differences between the different age groups in dynamics. The pulse-wave dopplerpulse showed-statistically significant differences initially and after chemotherapy in different age groups patients (p < 0,0001). Particularly, intergroup differences in E and E' values caused by age-related physiological processes of aging, and occurs as a left ventricular diastolic compliance violation due to age-related changes in the connective tissue matrix composition and structure. In both groups patients, receiving anthracycline antibiotic therapy, NT-proBNP and troponin I levels were significantly increased compared before chemotherapy measurement, but no significant intergroup differences were found (p > 0,05).
El-Khatib M.A., Vatutin N.T. 2021. Analysis of heart morpho-functional parameteres and myocardial injury biomarkers during anthracycline chemotherapy. Challenges in Modern Medicine. 44 (4): 404–416 (in Russian). DOI: 10.52575/2687-0940-2021-44-4-404-416.
While nobody left any comments to this publication.
You can be first.
Vatutin N.T., Jel'-Hatib M.A. 2021. Osobennosti variabel'nosti serdechnogo ritma u pacientov razlichnyh vozrastnyh grupp, poluchajushhih terapiju antraciklinami [Heart rate variability in different age groups patienys, receiving anthracycline chemotherapy]. Tavricheskij mediko-biologicheskij vestnik, 24(1): 74–79.
Gendlin G.E., Emelina E.I. 2017. Sovremennyj vzgljad na kardiotoksichnost' himioterapii onkologicheskih zabolevanij, vkljuchajushhej antraciklinovye antibiotiki [Modern view on cardiotoxicity of chemotherapeutics in oncology including anthracyclines]. Russian Journal of Cardiology, 3: 143–154.
Kononchuk N.B., Mit'kovskaja N.P., Abramova E.S., Shapoval E.V., Kononchuk S.N. 2013. Kardiotoksichnost', inducirovannaja himioterapiej raka molochnoj zhelezy: faktory riska, patogenez [Сardiotoxicity induced by chemotherapy for breast cancer: risk factors, pathogenesis]. Medicinskij zhurnal (Minsk), 45(3): 4–7.
Seliverstova D.V., Evsina O.V. 2016. Kardiotoksichnost' himioterapii [Cardiotoxicity of chemotherapy]. Serdce: zhurnal dlja praktikujushhih vrachej, 15: 50–57.
Snegovoj A.V., Vicenja M.V., Kopp M.V. 2015. Prakticheskie rekomendacii po korrekcii kardiovaskuljarnoj toksichnosti, inducirovannoj himioterapiej i targetnymi preparatami [Clinical guidelines for correction cardiovascular toxicity antitumor drug therapy]. Malignant tumours, 4: 369–378.
Jel'-Hatib M.A., Vatutin N.T. 2021. Dinamika pokazatelej perekisnogo okislenija lipidovi antioksidantnoj sistemy u pacientov razlichnyh vozrastnyh grupp, poluchajushhih terapiju antraciklinovymi antibiotikami [Dynamics of lipid peroxidation and antioxidant system activity in different age groups patients, receiving anthracycline chemotherapy], Mediko-social'nye problemy sem'i, 26 (3): 71–77.
Biasillo G., Cipolla G., Cardinaleurr D. 2017. Cardio-oncology: gaps in knowledge, goals, advances, and educational efforts. Oncol Rep, 19 (8): 55.
Cardinale D., Sandri M.T., Colombo A., Colombo N., Boeri M., Lamantia G., Civelli M., Peccatori F., Martinelli G., Fiorentini C., Cipolla C.M. 2004. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation, 109 (22): 2749–54.
Christenson E.S., James T., Agrawal V., Park B.H. 2015. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin Biochem., 48 (4–5): 223–35.
De Iuliis F., Salerno G., Taglieri L., De Biase L., Lanza R., Cardelli P., Scarpa S. 2016. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumour Biol., 37 (3): 3379–87.
Huang J., Yan Z.N., Rui Y.F., Shen D., Fan L., Chen D.L. 2017. Longitudinal rotation: a new way to detect the cardiotoxicity of anthracycline-based chemotherapy in breast cancer patients. Oncotarget, 8 (41): 70072–70083.
Jiji R.S., Kramer C.M., Salerno M. 2012 Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J. Nucl. Cardiol., 19 (2): 377–88.
Manrique C.R., Park M., Tiwari N., Plana J.C., Garcia M.J. 2017. Diagnostic Strategies for Early Recognition of Cancer Therapeutics-Related Cardiac Dysfunction. Clin. Med. Insights. Cardiol., 11: 1–12.
McGowan J.V., Chung R., Maulik A., Piotrowska I., Walker J.M., Yellon D.M. 2017. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs. Ther., 31 (1): 63.
Michel L., Rassaf T. 2019. Cardio-oncology: need for novel structures. Eur. J. Med. Res., 24 (1): 1.
Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F. 3rd, Dokainish H., Edvardsen T., Flachskampf F.A., Gillebert T.C., Klein A.L., Lancellotti P., Marino P., Oh J.K., Popescu B.A., Waggoner A.D. 2016. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr., 29 (4): 277–314.
Negishi T., Negishi K. 2018. Echocardiographic evaluation of cardiac function after cancer chemotherapy. J. Echocardiogr., 16 (1): 20–27.
Neilan T.G., Coelho-Filho O.R., Pena-Herrera D., Shah R.V., Jerosch-Herold M., Francis S.A., Moslehi J., Kwong R.Y. 2012. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. The American journal of cardiology, 110 (11): 1679–1686.
Pai V.B., Nahata M.C. 2000. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug. Saf., 22 (4): 263–302.
Pavo N., Raderer M., Hülsmann M., Neuhold S., Adlbrecht C., Strunk G., Goliasch G., Gisslinger H., Steger G.G., Hejna M., Köstler W., Zöchbauer-Müller S., Marosi C., Kornek G., Auerbach L., Schneider S., Parschalk B., Scheithauer W., Pirker R., Drach J., Zielinski C., Pacher R. 2015. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart, 101 (23): 1874–80.
Raj S., Franco V.I., Lipshultz S.E. 2014. Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr. Treat. Options. Cardiovasc. Med.,16 (6): 315.
Riddell E., Lenihan D. 2018. The role of cardiac biomarkers in cardio-oncology. Curr. Probl. Cancer., 42 (4): 375–385.
Romano S., Fratini S., Ricevuto E., Procaccini V., Stifano G., Mancini M., Di Mauro M., Ficorella C., Penco M. 2011. Serial measurements of NT-proBNP are predictive of not-high-dose anthracycline cardiotoxicity in breast cancer patients. Br. J. Cancer., 105 (11): 1663–8.
Sandri M.T., Salvatici M., Cardinale D., Zorzino L., Passerini R., Lentati P., Leon M., Civelli M., Martinelli G., Cipolla C.M. 2005. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin. Chem., 51 (8): 1405–10.
Santos D.S., Goldenberg R.C.S. 2018. Doxorubicin-induced cardiotoxicity: from mechanisms to development of efficient therapy (Chapter 1). Cardiotoxicity: Intech. Open. P. 3–24.
Sawyer D.B., Peng X., Chen B., Pentassuglia L., Lim C.C. 2010. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis., 53 (2): 105–113.
Senkus E., Jassem J. 2011. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev., 37 (4): 300–11.
Song F.Y., Shi J., Guo Y., Zhang C.J., Xu Y.C., Zhang Q.L., Shu X.H., Cheng L.L. 2017. Assessment of biventricular systolic strain derived from the two-dimensional and three-dimensional speckle tracking echocardiography in lymphoma patients after anthracycline therapy. Int. J. Cardiovasc. Imaging, 33 (6): 857–868.
Zamorano J.L., Lancellotti P., Rodriguez Muñoz D., Aboyans V., Asteggiano R., Galderisi M., Habib G., Lenihan D.J., Lip G.Y.H., Lyon A.R., Lopez Fernandez T., Mohty D., Piepoli M.F., Tamargo J., Torbicki A., Suter T.M. 2016. ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart. J., 37 (36): 2768–2801.
Zhang C.J., Pei X.L., Song F.Y., Guo Y., Zhang Q.L., Shu X.H., Hsi D.H., Cheng L.L. 2017. Early anthracycline-induced cardiotoxicity monitored by echocardiographic Doppler parameters combined with serum hs-cTnT. Echocardiography, 34 (11): 1593–1600.