Discussion issues of etiology, pathogenesis and treatment of new coronaviral infection COVID-19 in patients with concomitant cardiovascular diseases
The pandemic of the new coronavirus infection COVID-19, which swept the whole world in 2020, has become a serious threat to the life and health of humanity. Once again, the scientific community and clinicians were faced with the question of studying a new microorganism, developing diagnostic tests for its determination, studying pathogenetic mechanisms, and developing therapeutic effects on this virus. It is noted that the course of a new coronavirus infection is influenced by the presence of concomitant pathology, among which cardiovascular pathology is one of the most common. Concomitant cardiovascular pathology aggravates the course of this infection, in addition, myocardial injury often develops, which significantly increases the probability of a fatal outcome. The pathway of penetration of the viral RNA into the cell via the receptor for angiotensin-converting enzyme (ACE2), which plays a key role in the development of cardiovascular disease. It is this relationship that has led to the emergence of some controversial issues in the treatment of cardiovascular pathology in the era of the coronavirus infection pandemic. In this study we attempted to discuss the etiology, pathogenesis foundations for the development of the new coronavirus infection COVID-19, as well as modern approaches to its treatment.
Eliseeva L.Yu., Borovkova N.Yu., Grekhov A.V. 2021. Discussion issues of etiology, pathogenesis and treatment of new coronaviral infection COVID-19 in patients with concomitant cardiovascular diseases. Challenges in Modern Medicine. 44 (2): 139–153 (in Russian). DOI: 10.52575/2687-0940-2021-44-2-139-153.
While nobody left any comments to this publication.
You can be first.
Baklaushev V.P., Kulemzin S.V., Gorchakov A.A., Yusubalieva G.M., Lesnyak V.N., Sotnikova A.G. 2020. COVID-19. E`tiologiya, patogenez, diagnostika i lechenie [COVID-19. Etiology, pathogenesis, diagnosis and treatment]. Klinicheskaya praktika, 11 (1): 7–20. doi:10.17816/clinpract 26339.
Barbarash O.L., Karetnikova V.N., Kashtalap V.V., Zvereva T.N., Kochergina A.M. 2020. Novaya koronavirusnaya bolezn` (COVID-19) i serdechno-sosudisty`e zabolevaniya [New coronavirus disease (COVID-19) and cardiovascular disease]. Kompleksny`e problemy` serdechno-sosudisty`x zabolevanij, 9 (2): 17–28. https://doi.org/10.17802/2306-1278-2020-9-2-17-28.
Belyakov N.A., Rassoxin V.V., Yastrebova E.B. 2020. Koronavirusnaya infekciya COVID-19. Priroda virusa, patogenez, klinicheskie proyavleniya [Coronavirus infectious disease COVID-19. Nature of virus, pathogenesis, clinical manifestations]. Soobshhenie 1. VICh-infekciya i immunosupressii. 12: 1. https://doi.org/10.22328/2077-9828-2020-12-1-7-21.
Veselova E.I., Russkix A.E., Kaminskij G.D., Lovacheva O.V., Samojlova A.G., Vasil`eva I.A. 2020. Novaya koronavirusnaya infekciya. Tuberkulez i bolezni legkix [Novel coronavirus infection. Tuberculosis and Lung Diseases]. 98 (4): 6–14.
Galkin A.A., Demidova V.S. 2014. Central`naya rol` nejtrofilov v patogeneze sindroma ostrogo povrezhdeniya legkix (Ostry`j respiratorny`j distress-sindrom) [The Central Role of Neutrophils in Pathogenesis of Acute Lung Injury Syndrome (ALI/ARDS)]. Uspexi sovremennoj biologii. 134 (4): 377–394.
Kamkin E.G. 2020. Vremenny`e metodicheskie rekomendacii, profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19) [Temporary guidelines, prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Versiya 9.
Kamkin E.G. 2020. Vremenny`e metodicheskie rekomendacii, profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19) [Temporary guidelines, prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Versiya 10.
Kamkin E.G. 2021. Vremenny`e metodicheskie rekomendacii. profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19) [Temporary guidelines, prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]. Versiya 11.
Korostovceva L.S., Rotar` O.P., Konradi A.O. 2020. COVID-19: kakovy` riski pacientov s arterial`noj gipertenziej? [COVID-19: what are the risks in hypertensive patients?] Arterial`naya gipertenziya. 26–2.
Nikiforov V.V., Suranova T.G., Mironov A.Yu., Zabozlaev F.G. 2020. Novaya koronavirusnaya infekciya (COVID-19): e`tiologiya, e`pidemiologiya, klinika, diagnostika, lechenie i profilaktika [New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention]. Moskva, 48 s.
Sokol`chik V.N. 2006. Filosofiya mediciny`: istoki i perspektivy` [Philosophy of medicine: origins and prospects]. 19–21.
Uspenskaya Yu.A., Komleva Yu.K., Gorina Ya.V., Pozhilenkova E.A., Belova O.A., Salmina A.B. 2018. Polifunkcional`nost` CD147 i novy`e vozmozhnosti dlya diagnostiki i terapii [CD147 polyfunctionality and new diagnostic and therapy opportunities]. Sibirskoe medicinskoe obozrenie, 4 (112). doi:10.20333/2500136-2018-4-22-30.
Turchina M.S., Mishina A.S., Veremejchik A.L., Reznikov R.G. 2020. Klinicheskie osobennosti porazheniya zheludochno-kishechnogo trakta u bol`ny`x s novoj koronavirusnoj infekciej COVID-19 [Clinical features of gastrointestinal tract damage in pations with new coronaviral infection COVID-19]. Nauchny`e vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Medicina. Farmaciya, 43 (1): 5-15. doi: 10.18413/2687-0940-2021-43-1-5-15.
Shlyaxto E.V., Konradi A.O., Arutyunov G.P., Arutyunov A.G., Bautin A.E., Bojczov S.A., Villeval`de S.V., Grigor`eva N.Yu., Duplyakov D.V., Zvartau N.E`., Koziolova N.A., Lebedev D.S., Mal`chikova S.V., Medvedeva E.A., Mixajlov E.N., Moiseeva O.M., Orlova Ya.A., Pavlova T.V., Pevzner D.V., Petrova M.M., Rebrov A. P., Sitnikova M.Yu., Solov`eva A.E., Tarlovskaya E.I., Trukshina M.A., Fedotov P.A., Fomin I.V., Xripun A.V., Chesnikova A.I., Shaposhnik I.I., Yavelov I.S., Yakovlev A.N. 2020. Rukovodstvo po diagnostike i lecheniyu boleznej sistemy` krovoobrashheniya v kontekste pandemii COVID-19 [Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic], Rossijskij kardiologicheskij zhurnal, 25 (3). doi:10.15829/1560-4071-2020-3-3801.
Shhelkanov M.Yu., Kolobuxina L.V., Burgasova O.A., Kruzhkova I.S., Maleev V.V. 2020. COVID-19: e`tiologiya, klinika, lechenie [COVID-19: etiology, clinical picture, treatment]. Infekciya i immunitet, 10 (3). http://dx.doi.org/10.15789/2220-7619-CEC-1473.
Brake S.J., Barnsley K., Lu W., McAlinden K.D., Eapen M.S., Sohal S.S. 2020. Smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (Covid-19). 9 (5): 1321.
Dabbous H.M., Abd-Elsalam S., El-Sayed M.H., Sherief A.F., Ebeid F.F., Abd El Ghafar M.S., Soliman S., Elbahnasawy M., Badawi R., Tageldin M.A. 2021. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Archives of Virology, 166 (3): 949–954.
Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T.S., Nigoghossian C.D., Zidar D.A., Haythe J., Brodie D., Beckman J.A., Kirtane A.J., Stone G.W., Krumholz H.M., Parikh S.A. 2020. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology, 75 (18): 2352–2371.
Fang L., Karakiulakis G., Roth M. 2020. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet. Respiratory Medicine. 8 (4): e21.
Gao J., Tian Z., Yang X. 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends. 14: 72–73.
Herold S., Steinmueller M., von Wulffen W., Cakarova L., Pinto R., Pleschka S., Mack M., Kuziel W.A., Corazza N., Brunner Th., Lohmeyer J. 2008. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. The Journal of experimental medicine, 205 (13): 3065–3077.
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N-H., Nitsche A., Müller M.A., Pöhlmann, S. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor cell, 181 (2): 271–280.
Imai Y., Kuba K., Penninger J.M. 2008. The discovery of angiotensin converting enzyme 2 and its role in acute lung injury in mice. Experimental physiology, 93 (5): 543–548.
Imai Y., Kuba K., Rao S., Huan Y., Guo, F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui Сh., Hein L., Uhlig S., Slutsky A.S., Jiang Ch., Penninger J.M. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436 (7047): 112–116.
Kuster G.M., Pfister O., Burkard T., Zhou Q., Twerenbold R., Haaf P., Widmer A.F., Osswald S. 2020. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? European heart journal. doi: 10.1093/eurheartj/ehaa235.
Liu W.M., van der Zeijst B.A., Boog C.J., Soethout E.C. 2011. Aging and impaired immunity to influenza viruses: implications for vaccine development. Human vaccines, 7 (1): 94–98.
Malik Y.A. 2020. Properties of coronavirus and SARS-CoV-2. The Malaysian journal of pathology, 42 (1): 3–11.
Polgreen L.A., Riedle B.N., Cavanaugh J.E., Girotra S., London B., Schroeder M.C., Polgreen P.M. 2018. Estimated cardiac risk associated with macrolides and fluoroquinolones decreases substantially when adjusting for patient characteristics and comorbidities. Journal of the American Heart Association, 7 (9): e008074.
Postma D.F., Spitoni C., Van Werkhoven C.H., Van Elden L.J., Oosterheert J.J., Bonten M.J. 2019. Cardiac events after macrolides or fluoroquinolones in patients hospitalized for community-acquired pneumonia: post-hoc analysis of a cluster-randomized trial. BMC infectious diseases, 19 (1): 1–12.
Saltiel A.R., Olefsky J.M. 2017. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of clinical investigation, 127 (1): 1–4.31.
Seneviratne S.L., Abeysuriya V., De Mel S., De Zoysa I., Niloofa R. 2020. Favipiravir in COVID-19. International Journal of Progressive Sciences and Technologies, 19 (2): 143–145.
Sparks M.A., South A., Welling P., Luther J.M., Cohen J., Byrd J.B., Burrell L.M., Batlle D., Tomlinson L., Bhalla V., Rheault M.N., Soler M.J., Swaminathan S., Hiremath S. 2020. Sound science before quick judgement regarding RAS blockade in COVID-19. Clinical Journal of the American Society of Nephrology, 15 (5): 714–716.
Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. 2012. Into the eye of the cytokine storm. Microbiology and molecular biology reviews: MMBR, 76 (1): 16.
Yang Z., Prinsen J.K., Bersell K.R., Shen W., Yermalitskaya L., Sidorova T., Luis P.B., Hall L., Zhang W., Du L., Milne G., Tucker P., George Jr. A.L., Campbell C.M., Pickett R.A., Shaffer Ch.M., Chopra N., Yang T., Knollmann B.C., Roden D.M., Murra, K.T. 2017. Azithromycin causes a novel proarrhythmic syndrome. Circulation: Arrhythmia and Electrophysiology, 10 (4): e003560.
Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., Liu X., Zhao L., Dong E., Song Ch., Zhan S., Lu R., Li H., Tan W., Liu D. 2020. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical infectious diseases, 71 (15): 732–739.
Wan Y., Shang J., Graham R., Baric R.S., Li F. 2020. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94 (7).
Wang K., Chen W., Zhou Y.S., Lian J.Q., Zhang Z., Du P., Gong L., Zhang Y., Cui H., Geng J., Wang B., Sun X., Wang Ch., Yang X., Lin P., Deng Y., Wei D., Yang X., Zhu Y., Zhang K., Zheng Z., Miao J., Guo T., Shi Y., Zhang J., Fu L., Wang Q., Bian H., Zhu P., Chen Z.N. 2020. SARSCoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv.
Warren T.K., Jordan R., Lo M.K., Ray A.S., Mackman R.L., Soloveva V., Siegel D., Perron M., Bannister R., Hui H.C., Larson N., Strickley R., Wells J., Stuthman K.S., Tongeren S.A., Garza N.L., Donnelly G., Shurtleff A.C., Retterer C.J., Gharaibeh D., Zamani R., Kenny T., Eaton B.P., Grimes E., Welch L.S., Gomba L., Wilhelmsen C.L., Nichols D.K., Nuss J.E., Nagle E.R., Kugelman J.R., Palacios G., Doerffler E., Neville S., Carra E., Clarke M.O., Zhang M., Lew W., Ross B., Wang Q., Chun C., Wolfe L., Babusis D., Park Y., Stray K.M., Trancheva I.,. Feng J.Y, Barauskas O., Xu Y., Wong P., Braun M.R, Flint M., McMullan L.K., Chen Sh., Fearns R., Swaminathan S., Mayers D.L., Spiropoulou Ch.F., Lee W.A, Nichol S.T., Cihlar T., Bavari S. 2016. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531 (7594): 381–385.
Watkins J. 2020. Preventing a covid-19 pandemic.