Neural Network Classification of the Type of Ulcerative Gastroduodenal Bleeding According to Endoscopic Images
Ulcerative gastroduodenal bleeding remains a serious problem in modern medicine. To determine the type of ulcerative bleeding, the Forrest classification is used worldwide, defining the tactics of treating patients with bleeding gastroduodenal ulcers. The ability to correctly classify the type of bleeding depends primarily on the experience of an endoscopist. With the development of artificial intelligence technologies, there are high expectations in improving the diagnosis and treatment of surgical diseases. This article discusses the possibility of developing an algorithm for recognizing the type of ulcerative bleeding from endoscopic images using machine learning models and integrating it into an expert medical decision support system. In the course of this study, the first Russian neural network classification was developed, which makes it possible to determine the type of ulcerative gastroduodenal bleeding with 75,56 % accuracy. The developed algorithm for recognizing the type of ulcerative bleeding is integrated into a mobile application as a tool to help in making medical decisions, which in the future will improve the quality of diagnosis and medical care for patients with gastrointestinal bleeding of ulcerative etiology.
Barannikov S.V., Kashirina I.L., Cherednikov E.F., Parkhisenko Yu.A. Vorotilina A.I. 2025. Neural Network Classification of the Type of Ulcerative Gastroduodenal Bleeding According to Endoscopic Images. Challenges in Modern Medicine, 48(4): 520–535 (in Russian). DOI: 10.52575/2687-0940-2025-48-4-520-535. EDN: WXGOML




While nobody left any comments to this publication.
You can be first.
Barannikov S.V., Cherednikov E.F., Banin I.N, Sudakov D.V., Bavykina I.A. 2025. Mobile Application «Prevention of Gastroduodenal Bleeding: An Individualized Risk Assessment Scheme, the Formation of Recommendations on Patient Management Tactics». Challenges in Modern Medicine, 48(3): 390–398 (in Russian). doi: 10.52575/2687-0940-2025-48-3-390-398
Barannikov S.V., Cherednikov E.F., Banin I.N., Choporov O.N., Sudakov D.V., Bolkhovitinov A.E., Kashirina I.L, Vorotilina A.I. 2025. Mobile Application: Expert Digital Medical Decision Support System «Endoscopic Hemostasis of Ulcerative Gastroduodenal Bleeding» Humans and their Health, 28(1): 21–30 (in Russian). doi: 10.21626/vestnik/2025-1/03
Bedin V.V., Korzheva I.Yu., Vlasenko A.V., Mikhailyants G.S., Turkan V.A., Bocharnikov D.S., Sokolov K.A. 2025. Ulcerative Gastroduodenal Bleeding with a High Risk of Recurrence. Treatment Tactics. Moscow Surgical Journal, (2): 200–212 (in Russian). doi: 10.17238/2072-3180-2025-2-200-212
Bezaltynykh E.D., Bezaltynykh V.A., Zebzeev A.A. 2025. Analysis of the Prevalence of Complications of Gastric Ulcer. Smolenskiy Medical Almanac, 1–2: 19–21 (in Russian). doi: 10.37903/SMA.2025.1.53
Hasanov A.F., Galikhanov R.I., Akhmarov N.V., Babayeva G., Maslyaninova A.E. 2025. The Role of Endoscopy in the Diagnosis and Treatment of Gastrointestinal Bleeding. International Scientific Research Journal, 3(153) (in Russian). doi: 10.60797/IRJ.2025.153.55
Heinrich S.R., Durleshter V.M., Kalachev A.G., Bedanokov K.M. 2025. Choosing the Optimal Surgical Method for Duodenal Ulcer Complicated by Bleeding. Pirogov Russian Journal of Surgery, 2:111 118 (in Russian). doi: 10.17116/hirurgia2025021111
Ivashkin V.Т., Mayev I.V., Tsarkov Р.V., Korolev М.Р., Andreev D.N., Baranskaya Е.К., Bordin D.S., Burkov S.G., Derinov А.А., Efetov S.К., Lapina Т.L., Pavlov Р.V., Pirogov S.S., Poluektova Е.А., Tkachev А.V., Trukhmanov А.S., Uljanin А.I., Fedorov Е.D., Sheptulin А.А. 2024. Diagnostics and Treatment of Peptic Ulcer in Adults (Clinical Guidelines of the Russian Gastroenterological Association, the Russian Society of Colorectal Surgeons, the Russian Endoscopic Society and the Scientific Society for the Clinical Study of Human Microbiome). Russian Journal of Gastroenterology, Hepatology, Coloproctology, 34(2): 101–131 (in Russian). doi: 10.22416/1382-4376-2024-34-2-101-131
Kashirina I.L., Vorotilina A.I., Barannikov S.V., Cherednikov E.F., Choporov O.N. 2025. Neural Network Classification of the Type of Ulcerative Gastroduodenal Bleeding According to Endoscopic Images. Certificate of State Registration of the Computer Program N 2025681146 (in Russian).
Revishvili A.Sh., Olovyannyj V.E., Gogiya B.Sh., Ruchkin D.V., Markov P.V., Gurmikov B.N., Mamoshin A.V., Chililov A.M., Kuznecov A.V., Shelina N.V. 2025. Surgical Care in the Russian Federation, Moscow: 192 (in Russian).
Sheptulin A.A., Rabotyagova Y.S. 2025. Etiological Factors and Peculiarities of Diff Erential Diagnosis of Multiple Gastric Ulcers. Clinical Medicine (Russian Journal), 03(3): 223–227 (in Russian). doi: 10.30629/0023-2149-2025-103-3-223-227
Alhajlah M., Noor M.N., Nazir M., Mahmood A., Ashra, I., Karamat T. 2023. Gastrointestinal Diseases Classification using Deep Transfer Learning and Features Optimization. Comput. Mater. Contin, 75(1), 2227–2245. doi: 10.32604/cmc.2023.031890
Bindra S., Jain R. 2024. Artificial Intelligence in Medical Science: A Review. Ir J Med Sci.,193(3): 1419–1429. doi: 10.1007/s11845-023-03570-9
Borgli H., Thambawita V., Smedsrud P.H., Hicks S., Jha D., Eskeland S.L., Randel K.R., Pogorelov K., Lux M., Nguyen D.T.D., Johansen D., Griwodz C., Stensland H.K., Garcia-Ceja E., Schmid, P.T., Hammer H.L., Riegler M. A., Halvorsen P., de Lange T. 2020. HyperKvasir, a Comprehensive Multi-Class Image and Video Dataset for Gastrointestinal Endoscopy. Scientific data, 7(1), 283. doi: 10.1038/s41597-020-00622-y
Cherednikov E.F., Barannikov S.V., Yuzefovich I.S., Chernykh A.V., Berezhnova T.A., Polubkova G.V., Banin I.N., Maleev Yu.V., Ovsyannikov E.S., Shkurina I.A. 2022. Modern Technologies of Endoscopic Hemostasis in the Treatment of Ulcer Gastroduodenal Bleeding: A Literature Review. International Journal of Biomedicine, 12(1): 9–18. doi: 10.21103/Article12(1)_RA1
Liu Y., Jiang T., Li R., Yuan L., Grzegorzek M., Li C., Li X. 2025. A State of the Art Review of Diffusion Model Applications for Microscopic Image and Micro-Alike Image Analysis. Frontiers in Medicine, 12: 1551894. doi: 10.3389/fmed.2025.1551894
Lobanovs S., Aleksejeva J., Rūtiņa A. K., Krustiņš E., Čižovs, J., Bļizņuks D. 2025. Machine Learning in Gastrointestinal Endoscopy: Challenges and Opportunities. BMJ Open Gastroenterology, 12(1): e001923. doi: 10.1136/bmjgast-2025-001923
Shen H., Zhang, J., Xiong, B., Hu, R., Chen, S., Wan, Z., Wang, X., Zhang, Y., Gong, Z., Bao, G. 2025. Efficient Diffusion Models: A Survey. Transactions on Machine Learning Research (TMLR). doi: 10.48550/arXiv.2502.06805
Shung D.L. Advancing Care for Acute Gastrointestinal Bleeding using Artificial Intelligence. 2021 Journal of Gastroenterology and Hepatology, 36(5): 273–278. doi: 10.1111/jgh.15372
Tasci B., Dogan S., Tuncer T. 2025. Artificial Intelligence in Gastrointestinal Surgery: A Systematic Review. World J Gastrointest Surg., 17(8): 109463. doi:10.4240/wjgs.v17.i8.109463
Yen H.H., Wu P.Y., Chen M.F., Lin W.C., Tsai C.L., Lin K.P. 2021. Current Status and Future Perspective of Artificial Intelligence in the Management of Peptic Ulcer Bleeding: A Review of Recent Literature. Journal of Clinical Medicine, 10(16), 3527. doi: 10.3390/jcm10163527
Funding: the work was carried out with the funds of the Grant of the President of the Russian Federation for state support of young Russian scientists – Candidates of Sciences Grant No. MK-1069.2020.7 (MK-2020 Competition) and the award of the Government of the Voronezh Region among young scientists (Decree of the Government of the Voronezh Region 18.12.2023, No. 924).