Acomys Cahirinus as a Promising Species for Studying Myocardial Regeneration in Comparison with Classical Models
Myocardial infarction remains the leading cause of mortality worldwide, resulting in irreversible cardiomyocyte loss and scar tissue formation. This review aims to analyze Acomys cahirinus as a promising model for studying myocardial regeneration. Materials and Methods: A systematic search for articles published over the past five years was conducted in PubMed, Google Scholar, and eLIBRARY databases using keywords in Russian and English, selected in accordance with the study objective. Results: In Acomys, a significant restoration of cardiac function was observed: ejection fraction increased from 25% to 65% within four weeks, accompanied by reduced infarct size (18% vs. 76% in Mus), decreased fibrosis, and active cardiomyocyte proliferation. Unique features of Acomys cahirinus include enhanced vascular density in scar tissue, a "youthful" cardiomyocyte phenotype (predominance of mononuclear diploid cells, expression of T-type calcium channels), and a suppressed inflammatory response dominated by M2 macrophages. Conclusion: Acomys cahirinus represents a groundbreaking model for investigating myocardial regeneration mechanisms, offering novel pathways for developing therapies aimed at stimulating cardiac repair in humans. These findings highlight the critical role of immune modulation and extracellular matrix remodeling in regenerative medicine.
Khusnutdinova D.A., Nabiullina A.A., Filatov N.S., Garaev A.T., Kiyasov A.P. 2025. Acomys Cahirinus as a Promising Species for Studying Myocardial Regeneration in Comparison with Classical Models. Challenges in Modern Medicine, 48(3): 320–331 (in Russian). DOI: 10.52575/2687-0940-2025-48-3-320-331. EDN: MRUZXA
While nobody left any comments to this publication.
You can be first.
Nikishin A.G., Pirnazarov M.M., Mamarasulov T.M. 2011. Effektivnost' terapii ranney postinfarktnoy stenokardii vysokimi dozami Simvastatina [Efficacy of Therapy for Early Postinfarction Angina with High Doses of Simvastatin]. Kardiovaskulyarnaya terapiya i profilaktika / Cardiovascular Therapy and Prevention, 10(5): 26–29. doi: 10.15829/1728-8800-2011-5-26-29
Pankin O.A. 2004. Dogospital'nye faktory bol'nichnoy letal'nosti pri infarkte miokarda [Prehospital Factors of In-Hospital Mortality in Myocardial Infarction]. Klinicheskaya meditsina, (4): 40–45.
Oganov R.G., Fomina I.G. 2004. Kardiologiya. Rukovodstvo dlya vrachey [Cardiology. A Guide for Physicians]. M.: Meditsina: 397–480.
Shukurov R.T., Kurbanov R.D. 2011. Antiishemicheskaya i antianginal'naya effektivnost' dlitel'nogo primeneniya Bisoprolola u bol'nykh, perenesshikh infarkt miokarda [Anti-Ischemic and Antianginal Efficacy of Long-Term Use of Bisoprolol in Patients After Myocardial Infarction]. Kardiovaskulyarnaya terapiya i profilaktika / Cardiovascular Therapy and Prevention, 10(2): 60–68. doi: 10.15829/1728-8800-2011-2-60-68
NICE. 2020. Ostrye koronarnye sindromy [Acute Coronary Syndromes]. Rukovodstvo NG185, rekomendatsii 1.1.27 i 1.2.27.
Aimo A., Gaggin H., Barison A. et al. 2019. Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC: Heart Failure, 7(9): 782–794. doi: 10.1016/j.jchf.2019.06.004
American Heart Association. 2003. Heart Disease and Stroke Statistics. 2004 Update. Dallas, TX: American Heart Association, 26.
Annibali G., Scrocca I., Aranzulla T.C., Meliga E., Maiellaro F., Musumeci G. 2022. "No-Reflow" Phenomenon: A Contemporary Review. Journal of Clinical Medicine, 11(8): 2233. doi: 10.3390/jcm11082233
Bolli R., Mitrani R.D., Hare J.M., Pepine C.J., Perin E.C., Willerson J.T., Traverse J.H., Henry T.D., Yang P.C., Murphy M.P., March K.L., Schulman I.H., Ikram S., Lee D.P., O'Brien C., Lima J.A., Ostovaneh M.R., Ambale-Venkatesh B., Lewis G., Khan A., Bacallao K., Valasaki K., Longsomboon B., Gee A.P., Richman S., Taylor D.A., Lai D., Sayre S.L., Bettencourt J., Vojvodic R.W., Cohen M.L., Simpson L., Aguilar D., Loghin C., Moyé L., Ebert R.F., Davis B.R., Simari R.D. for the Cardiovascular Cell Therapy Research Network (CCTRN). 2021. A Phase II Study of Autologous Mesenchymal Stromal Cells and c-kit Positive Cardiac Cells, Alone or in Combination, in Patients with Ischaemic Heart Failure: The CCTRN CONCERT-HF Trial. European Journal of Heart Failure, 23(4): 661–674. doi: 10.1002/ejhf.2178
Chen K. et al. 2022. Disrupting Mechanotransduction Decreases Fibrosis and Contracture in Split-Thickness Skin Grafting. Science Translational Medicine, 14(667): eabj9152. doi: 10.1126/scitranslmed.abj9152
Chen Z., Ishibashi S., Perrey S., Osuga J-i., Gotoda T., Kitamine T., Tamura Y., Okazaki H., Yahagi N., Iizuka Y. 2001. Troglitazone Inhibits Atherosclerosis in Apolipoprotein E Knockout Mice Pleiotropic Effects on CD36 Expression and HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(3): 372–377. doi: 10.1161/01.atv.21.3.372
Cutie S., Huang G.N. 2021. Vertebrate Cardiac Regeneration: Evolutionary and Developmental Perspectives. Cell Regeneration, 10: 6. doi: 10.1186/s13619-020-00068-y
Del Re D.P., Amgalan D., Linkermann A., Liu Q., Kitsis R.N. 2019. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiological Reviews, 99(4): 1765–1817. doi: 10.1152/physrev.00022.2018
Deng X., Shen A., Jiang L. 2025. Bioinformatics Analysis of JUP in Patients with Acute Myocardial Infarction and its Potential Application in Clinical Prognostic Evaluation. Frontiers in Cardiovascular Medicine, 12: 1531309. doi: 10.3389/fcvm.2025.1531309
Gardner C.R., Davies K.A., Zhang Y., Brzozowski M., Czabotar P.E., Murphy J.M., Lessene G. 2023. From (Tool) Bench to Bedside: The Potential of Necroptosis Inhibitors. Journal of Medicinal Chemistry, 66(4): 2361–2385. doi: 10.1021/acs.jmedchem.2c01621
Gavira J.J., Perez-Ilzarbe M., Abizanda G., García-Rodríguez A., Orbe J., Páramo J.A., Belzunce M., Rábago G., Barba J., Herreros J. 2006. A Comparison Between Percutaneous and Surgical Transplantation of Autologous Skeletal Myoblasts in a Swine Model of Chronic Myocardial Infarction. Cardiovascular Research, 71(4): 744–753. doi: 10.1016/j.cardiores.2006.06.011
Goldman J.A., Poss K.D. 2020. Gene Regulatory Programmes of Tissue Regeneration. Nature Reviews Genetics, 21(9): 511–525. doi: 10.1038/s41576-020-0239-7
Haub J. et al. 2019. Intervention of Inflammatory Monocyte Activity Limits Dermal Fibrosis. Journal of Investigative Dermatology, 139(10): 2144–2153. doi: 10.1016/j.jid.2019.04.006
Heusch G. 2020. Myocardial Ischaemia–Reperfusion Injury and Cardioprotection in Perspective. Nature Reviews Cardiology, 17(12): 773–789. doi: 10.1038/s41569-020-0403-y
Hu Y., Zhang Y., Han P., Pan Y., Liu J., Li Y., Pan D., Ren J. 2025. Machine Learning-Driven Prediction of Readmission Risk in Heart Failure Patients with Diabetes: Synergistic Assessment of Inflammatory and Metabolic Biomarkers. International Journal of Cardiology, 441: 133743. doi: 10.1016/j.ijcard.2025.133743
Hui X., Lin Q., Liu K., Gu C., Abdelbaset-Ismail A., Wintergerst K.A., Deng Z., Cai L., Tan Y. 2025. Fibroblast Growth Factor 16: Molecular Mechanisms, Signalling Crosstalk, and Emerging Roles in Cardiac Biology and Metabolic Regulation. Pharmacological Research, 218: 107858. doi: 10.1016/j.phrs.2025.107858
Li B., Wang R., Wang Y., Stief C.G., Hennenberg M. 2020. Regulation of Smooth Muscle Contraction by Monomeric non-RhoA GTPases. British Journal of Pharmacology, 177(17): 3865–3877. doi: 10.1111/bph.15172
Lubberding A.F., Sattler S.M., Flethøj M., Tfelt-Hansen J., Jespersen T. 2020. Comparison of Hemodynamics, Cardiac Electrophysiology, and Ventricular Arrhythmia in an Open- and a Closed-Chest Porcine Model of Acute Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 318(2): H391–H400. doi: 10.1152/ajpheart.00406.2019
Maden M., Varholick J.A. 2020. Model Systems for Regeneration: The Spiny Mouse, Acomys Cahirinus. Development, 147(4): dev167718. doi: 10.1242/dev.167718
Martin T.P., MacDonald E.A., Elbassioni A.A.M., O'Toole D., Zaeri A.A.I., Nicklin S.A., Gray G.A., Loughrey C.M. 2022. Preclinical Models of Myocardial Infarction: From Mechanism to Translation. British Journal of Pharmacology, 179(5): 770–791. doi: 10.1111/bph.15595
Martínez-Falguera D., Fadeuilhe E., Teis A., Aranyo J., Adeliño R., Bisbal F., Rodriguez-Leor O., Gálvez-Montón C. 2021. Myocardial Infarction by Percutaneous Embolization Coil Deployment in a Swine Model. Journal of Visualized Experiments, (177): e63172. doi: 10.3791/63172
Meng Y., Garnish S.E., Davies K.A., Black K.A., Leis A.P., Horne C.R., Hildebrand J.M., Hoblos H., Fitzgibbon C., Young S.N., Dite T., Dagley L.F., Venkat A., Kannan N., Koide A., Koide S., Glukhova A., Czabotar P.E., Murphy J.M. 2023. Phosphorylation-Dependent Pseudokinase Domain Dimerization Drives Full-Length MLKL Oligomerization. Nature Communications, 14: 6804. doi: 10.1038/s41467-023-42255-w
Padro T., Manfrini O., Bugiardini R., Canty J., Cenko E., De Luca G., Duncker D.J., Eringa E.C., Koller A., Tousoulis D., Trifunovic D., Vavlukis M., de Wit C., Badimon L., ESC Working Group on Coronary Pathophysiology and Microcirculation. 2020. ESC Working Group on Coronary Pathophysiology and Microcirculation Position Paper on ‘Coronary Microvascular Dysfunction in Cardiovascular Disease’. Cardiovascular Research, 116(4): 741–755. doi: 10.1093/cvr/cvaa003
Peng H., Shindo K., Donahue R.R., Gao E., Ahern B.M., Levitan B.M., Tripathi H., Powell D., Noor A., Elmore G.A., Satin J., Seifert A.W., Abdel-Latif A. 2021. Adult Spiny Mice (Acomys) Exhibit Endogenous Cardiac Recovery in Response to Myocardial Infarction. NPJ Regenerative Medicine, 6(1): 74. doi: 10.1038/s41536-021-00186-4
Perin E., Borow K., Henry T. et al. 2023. Randomized Trial of Targeted Transendocardial Mesenchymal Precursor Cell Therapy in Patients with Heart Failure. Journal of the American College of Cardiology, 81(9): 849–863. doi: 10.1016/j.jacc.2022.11.061
Sicklinger F., Zhang Y., Lavine K.J., Simon N., Bucher V., Jugold M., Lehmann L., Konstandin M.H., Katus H.A., Leuschner F. 2020. A Minimal-Invasive Approach for Standardized Induction of Myocardial Infarction in Mice. Circulation Research, 127(9): 1214–1216. doi: 10.1161/CIRCRESAHA.120.317794
Stürzebecher P.E., Kralisch S., Schubert M.R., Filipova V., Hoffmann A., Oliveira F., Sheikh B.N., Blüher M., Kogel A., Scholz M., Kokot K.E., Erbe S., Kneuer J.M., Ebert T., Fasshauer M., Miehle K., Laufs U., Tönjes A., Boeckel J.N. 2022. Leptin Treatment Has Vasculo-Protective Effects in Lipodystrophic Mice. Proceedings of the National Academy of Sciences of the United States of America, 119(40): e2110374119. doi: 10.1073/pnas.2110374119
Yang Y., Yu Z., Geng J., Liu M., Liu N., Li P., Hong W., Yue S., Jiang H., Ge H., Qian F., Xiong W., Wang P., Song S., Li X., Fan Y., Liu X. 2022. Cytosolic Peptides Encoding CaV1 C-termini Downregulate the Calcium Channel Activity-Neuritogenesis Coupling. Communications Biology, 5: 484. doi: 10.1038/s42003-022-03438-1
Yin J.L., Wu Y., Yuan Z.W., Gao X.H., Chen H.D. 2020. Advances in Scarless Foetal Wound Healing and Prospects for Scar Reduction in Adults. Cell Proliferation, 53(11): e12916. doi: 10.1111/cpr.12916