STUDY OF THE DIMENSIONAL ACCURACY OF THE INTERNAL FIT OF THE FRAMES OF ARTIFICIAL CROWNS MADE OF LITHIUM DISILICATE USING TRADITIONAL AND DIGITAL TECHNOLOGIES
The aim of the study was to study the quality of the internal fit of the frames of artificial crowns made of lithium disilicate made using the 3D printer Asiga Max UV, CAD/CAM-system KaVo ARCTICA, using digital images of the experimental model obtained by the intraoral laser scanner iTero Cadent and the frames of artificial crowns made by pressing molding ceramics. The size of the internal fit of the artificial crown frames was measured in the Image J computer program from photos of internal fit silicone replicas made with a Leica M320 operating microscope at 40-fold magnification. For statistical analysis of the obtained data, the nonparametric H-Kruskel-Wallis test and the W-Mann-Whitney test were used. It was found that the average value of the cement gap between the tooth stump and the frame of the artificial crown made of lithium disilicate made in the KaVo ARCTICA CAD/CAM system from E. max CAD blanks is 50,00 ± 2,559 microns, from the blanks of the ash-free polymer material KaVo ARCTICA C-Cast – 50,54 ± 0,5957 microns. The average value of the cement gap between the stump of the tooth and the frame of the artificial crown made using the 3D printer Asiga Max UV is 50,27 ± 1,218 microns. The average value of the cement gap between the stump of the tooth and the frame of the artificial crown, made using the traditional method of pressing without the use of digital technologies, was 120,7 ± 12,86 microns. Based on the data obtained, it is concluded that modern digital technologies allow manufacturing artificial crown frames made of lithium disilic with a smaller size of the cement gap, i. e. with significantly greater accuracy in contrast to frames obtained using traditional pressing technology (p < 0,05).
Zhulev E.N., Vokulova Y.A. 2020. Study of the dimensional accuracy of the internal fit of the frames of artificial crowns made of lithium disilicate using traditional and digital technologies. Challenges in Modern Medicine, 43 (2): 237–248 (in Russian). DOI 10.18413/2687-0940-2020-43-2-237-248.
While nobody left any comments to this publication.
You can be first.