12+

STUDY OF THE DIMENSIONAL ACCURACY OF THE INTERNAL FIT OF THE FRAMES OF ARTIFICIAL CROWNS MADE OF LITHIUM DISILICATE USING TRADITIONAL AND DIGITAL TECHNOLOGIES

The aim of the study was to study the quality of the internal fit of the frames of artificial crowns made of lithium disilicate made using the 3D printer Asiga Max UV, CAD/CAM-system KaVo ARCTICA, using digital images of the experimental model obtained by the intraoral laser scanner iTero Cadent and the frames of artificial crowns made by pressing molding ceramics. The size of the internal fit of the artificial crown frames was measured in the Image J computer program from photos of internal fit silicone replicas made with a Leica M320 operating microscope at 40-fold magnification. For statistical analysis of the obtained data, the nonparametric H-Kruskel-Wallis test and the W-Mann-Whitney test were used. It was found that the average value of the cement gap between the tooth stump and the frame of the artificial crown made of lithium disilicate made in the KaVo ARCTICA CAD/CAM system from E. max CAD blanks is 50,00 ± 2,559 microns, from the blanks of the ash-free polymer material KaVo ARCTICA C-Cast – 50,54 ± 0,5957 microns. The average value of the cement gap between the stump of the tooth and the frame of the artificial crown made using the 3D printer Asiga Max UV is 50,27 ± 1,218 microns. The average value of the cement gap between the stump of the tooth and the frame of the artificial crown, made using the traditional method of pressing without the use of digital technologies, was 120,7 ± 12,86 microns. Based on the data obtained, it is concluded that modern digital technologies allow manufacturing artificial crown frames made of lithium disilic with a smaller size of the cement gap, i. e. with significantly greater accuracy in contrast to frames obtained using traditional pressing technology (p < 0,05).

Keywords: digital impressions, CAD/CAM, intraoral scanner, stereolithography, 3D printing, internal fit of fixed prostheses, lithium disilicate crowns, digital technologies in dentistry.1. Arutyunov S.D, Beitan A.V, Gevorkyan A.A, Tsukor S.V, Komov E.V. 2006. Otsenka kachestva kraevogo prileganiya nes"emnoi konstruktsii zubnogo proteza [Assessment of the quality of the edge fit of a fixed denture structure]. Institut stomatologii. 4: 42–44. 2. Briks O. 2014. Izumitel'naya tsel'naya keramika [Amazing one-piece ceramics]. M, Med-itsinskaya pressa: 292. 3. Vokulova Y.A, Zhulev E.N. Otsenka tochnosti polucheniya ottiskov zubnykh ryadov s primeneniem tekhnologii lazernogo skanirovaniya [Evaluation of the accuracy of obtaining impressions of the dentition with the use of technology of laser scanning]. Modern problems of science and education. 2016, 5, URL: http://www.science-education.ru/ru/article/view?id=25447. 4. Vokulova Yu. A. 2017. Razrabotka i vnedrenie tsifrovykh tekhnologii pri ortopedicheskom lechenii s primeneniem nes"emnykh protezov zubov [Development and implementation of digital tech-nologies in orthopedic treatment using fixed dentures]. Avtoref. dis. ... kandidata meditsinskikh nauk. Nizhnii Novgorod, 22. 5. Zhulev E.N, Vokulova Yu.A. 2016. Izuchenie razmernoi tochnosti tsifrovykh ottiskov, poluchennykh s pomoshch'yu vnutrirotovogo skanera iTero [Study of the dimensional accuracy of digital impressions obtained using the intraoral scanner iTero]. Mezhdunarodnyi zhurnal prikladnykh i funda-mental'nykh issledovanii. 12–2: 257–261. URL: https://applied-research.ru/ru/article/view?id=10818. 6. Zhulev E.N, Vokulova Yu.A. 2017. Sravnitel'naya otsenka razmernoi tochnosti ottiskov v eksperimente [Comparative estimation of the dimensional accuracy of impressions in the experiment]. Dental Forum. 1: 38–42. 7. Karyakin N.N, Gorbatov R.O. 2019. 3D-pechat' v meditsine [3D printing in medicine]. M, GEOTAR-Media: 240. 8. Lebedenko I.Yu, Arutyunov S.D, Ryakhovskii A.N. 2016. Ortopedicheskaya stomatologi-ya: natsional'noe rukovodstvo [Prosthetic dentistry: a national guide]. M, GEOTAR-Media: 824. 9. Markskors R. 2007. Nes"emnye stomatologicheskie restavratsii [Non-removable dental res-toration]. M, Informatsionnoe agentstvo Newdent: 368. 10. Naumovich S.S, Razorenov A.N. 2016. CAD/CAM sistemy v stomatologii: sovremennoe sostoyanie i perspektivy razvitiya [CAD/CAM systems in dentistry: current state and development pro-spects]. Sovremennaya stomatologiya. 4: 2–9. 11. Rozenshtil' S.F. 2010. Ortopedicheskoe lechenie nes"emnymi protezami [Orthopedic treat-ment with fixed prostheses]. M, Medpress: 940. 12. Ryakhovskii A.N. 2010. Tsifrovaya stomatologiya [Digital dentistry]. M, OOO «Avantis»: 282. 13. Smit B, Khou L. 2010. Koronki i mostovidnye protezy v ortopedicheskoi stomatologii [Planning and making crowns and bridges]. M, MEDpress-inform, 344 (Bernard G.N. Smith, Leslie C. Howe. 1998. Planning and making crowns and bridges. Informa healthcare, 344). 14. Tsel'nokeramicheskie restavratsii (sbornik statei) [All-ceramic restorations (collection of ar-ticles)]. 2010. M, OOO «Meditsinskaya pressa»: 232. 15. Shustova V.A. Shustov M.A. 2016. Primenenie 3D-tekhnologii v ortopedicheskoi stoma-tologii [Application of 3D technologies in orthopedic dentistry]. SPb, SpetsLit: 159. 16. Dawood A, Sauret-Jackson V, Marti B, Darwood A. 2015. 3D printing in dentistry. Br. Dent. J, 219 (11): 521–529. 17. Massironi D, Pascetta R, Romeo G. 2007. Precision in dental esthetics. Clinical and labora-tory procedures. Quintessence: 464. 18. Ng J, Ruse D, Wyatt C. 2014. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J. Prosthet. Dent, 112 (3): 555–560. 19. Revilla-León M, Olea-Vielba M, Esteso-Saiz A, Martínez-Klemm I, Özcan M. 2018. Marginal and Internal Gap of Handmade, Milled and 3D Printed Additive Manufactured Patterns for Pressed Lithium Disilicate Onlay Restorations. Eur. J. Prosthodont. Restor. Dent, 26 (1): 31–38. DOI: 10.1922/EJPRD_01733RevillaLeon08. 20. Shamseddine L, Mortada R, Rifai K, Chidiac J.J. 2017. Fit of pressed crowns fabricated from two CAD-CAM wax pattern process plans: A comparative in vitro study. J. Prosthet. Dent, 118 (1): 49–54. DOI:10.1016/j.prosdent.2016.10.003.
DOI: 10.18413/2687-0940-2020-43-2-237-248
Number of views: 1813 (view statistics)
Number of downloads: 1344
Full text (PDF)To articles listTo category
  • User comments
  • Reference lists

While nobody left any comments to this publication.
You can be first.

Leave comment: