Mechanisms of Arrhythmia Development in COVID-19Patients
Arrhythmia is a common cardiovascular complication in patients with the coronavirus disease 2019 (COVID-19). According to studies, the incidence of arrhythmia ranges from 16.7% to 19.6% among those hospitalized with COVID-19. The aim of this review is to study the mechanisms of arrhythmia occurrence in COVID-19 patients, to provide physicians with a comprehensive basis for the prevention and treatment of these arrhythmias. Materials and methods. A search was conducted for articles over the past 5 years in the PubMed, Google Scholar, and eLIBRARY databases by keywords in Russian and English, articles were selected in accordance with the purpose of the study. Results. The occurrence of arrhythmias in patients with COVID-19 may be associated with local and systemic inflammatory reactions caused by a viral infection, leading to damage to cardiomyocytes, pericarditis, impaired immune response, cytokine storms, structural changes in the heart and cardiac conduction disturbances, which ultimately leads to the development of arrhythmias. But there are also other factors: electrolyte imbalance, myocardial ischemia/hypoxia, proarrhythmic side effects of drugs used to treat COVID-19, dysfunction of the autonomic nervous system. Conclusion. Each of the described mechanisms of arrhythmia development influences other mechanisms, the greatest number of influences are: myocarditis and impaired regulation of the immune response. To prevent arrhythmias associated with COVID-19, it is necessary to monitor the underlying disease, provide early detection and treatment of myocardial damage and other organ dysfunctions, prevent hypoxia, prevent systemic inflammation and reduce the use of drugs that prolong the QT interval.
Kamyshnikova L.A., Davydova I.V., Gordienko Yu.A., Baiduk D.V., Pribylov S.A., Payudis A.N. 2025. Mechanisms of arrhythmia development in COVID-19 Patients. Challenges in Modern Medicine, 48(1): 15–28 (in Russian). DOI: 10.52575/2687-0940-2025-48-1-15-28
While nobody left any comments to this publication.
You can be first.
Vishnevskij V.I., Panina J.N., Vishnevskij M.V. 2022. The Effect of Electrolyte Deficiency on Cardiac Arrhythmias Against the Background of a New Coronavirus Infection Challenges in Modern Medicine. 45(1): 55–64 (in Russian). doi: 10.52575/2687-0940-2022-45-1-55-64
Kamyshnikova L.А., Efremova O.A. 2017. Impact of Comorbidities on Myocardial Remodeling and Dysfunction in Heart Failure with Preserved Ejection Fraction. Clinical Medicine. 95(12): 1070–1076 (in Russian).
Kamyshnikova L.A., Efremova O.A., Fentisov V.V., Bolkhovitina O.A., Churnosov M.I. 2024. Genetic Determinants of Angiotensin-Converting Enzyme Levels (Data from Genome-Wide Studies). Arterial’naya Gipertenziya = Arterial Hypertension. 30(6): 537–552. doi:10.18705/1607-419X-2024-2446
Osipova O.A., Shepel R.N., Karutskaya O.A., Komisov A.A., Demko V.V., Belousova O.N., Chupakha M.V. 2023. The Role of Circulating Biomarkers in Post-COVID-19 Patients. Challenges in Modern Medicine. 46(3): 231–244 (in Russian). doi: 10.52575/2687-0940-2023-46-3-231-244
Babapoor-Farrokhran S., Gill D., Walker J., Rasekhi R.T., Bozorgnia B., Amanullah A. 2020. Myocardial Injury and COVID-19: Possible Mechanisms. Life Sci. 253: 117723. doi: 10.1016/j.lfs.2020.117723
Bhatla A., Mayer M.M., Adusumalli S., Hyman M.C., Oh E., Tierney A., Moss J., Chahal A.A., Anesi G., Denduluri S., Domenico C.M., Arkles J., Abella B.S., Bullinga J.R., Callans D.J., Dixit S., Epstein A.E., Frankel D.S., Garcia F.C., Kumareswaram R., Nazarian S., Riley M.P., Santangeli P., Schaller R.D., Supple G.E., Lin D., Marchlinski F., Deo R. 2020. COVID-19 and Cardiac Arrhythmias. Heart Rhythm. 17:1439–1444. doi: 10.1016/j.hrthm.2020.06.016
Boehmer T.K., Kompaniyets L., Lavery A.M., Hsu J., Ko J.Y., Yusuf H., Romano S.D., Gundlapalli A.V., Oster M.E., Harris A.M. 2021. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data – United States, March 2020 – January 2021. MMWR Morb Mortal Wkly Rep. 70: 1228–1232. doi: 10.15585/mmwr.mm7035e5
Bojkova D., Wagner J.U.G., Shumliakivska M., Aslan G.S., Saleem U., Hansen A., Luxán G., Günther S., Pham M.D., Krishnan J., Harter P.N., Ermel U.H., Frangakis A.S., Milting H., Zeiher A.M., Klingel K., Cinatl J., Dendorfer A., Eschenhagen T., Tschöpe C., Ciesek S., Dimmeler S. SARS-CoV-2 Infects and Induces Cytotoxic Effects in Human Cardiomyocytes. Cardiovasc Res. 2020; 116: 2207–2215. doi: 10.1093/cvr/cvaa267
Boulos P.K., Freeman S.V., Henry T.D., Mahmud E., Messenger J.C. 2023. Interaction of COVID-19 with Common Cardiovascular Disorders. Circ Res. 132: 1259–1271. doi: 10.1161/CIRCRESAHA.122.321952
Castiello T., Georgiopoulos G., Finocchiaro G., Claudia M., Gianatti A., Delialis D., Aimo A., Prasad S. 2022. COVID-19 and Myocarditis: A Systematic Review and Overview of Current Challenges. Heart Fail Rev. 27: 251–261. doi: 10.1007/s10741-021-10087-9
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. 2020. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet. 395: 507–513. doi: 10.1016/S0140-6736(20)30211-7
Chung M.K., Zidar D.A., Bristow M.R., Cameron S.J., Chan T., Harding C.V. 3rd, Kwon D.H., Singh T., Tilton J.C., Tsai E.J., Tucker N.R., Barnard J., Loscalzo J. 2021. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ Res. 128: 1214–1236. doi: 10.1161/CIRCRESAHA.121.317997
DePace N.L., Colombo J. 2022. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep. 24:1711–1726. doi: 10.1007/s11886-022-01786-2
Dherange P., Lang J., Qian P., Oberfeld B., Sauer W.H., Koplan B., Tedrow U. 2020. Arrhythmias and COVID-19: A Review. JACC Clin Electrophysiol. 6: 1193–1204. doi: 10.1016/j.jacep.2020.08.002
Donniacuo M., De Angelis A., Rafaniello C., Cianflone E., Paolisso P., Torella D., Sibilio G., Paolisso G., Castaldo G., Urbanek K., Rossi F., Berrino L., Cappetta D. 2023. COVID-19 and Atrial Fibrillation: Intercepting Lines. Front Cardiovasc Med. 10: 1093053. doi: 10.3389/fcvm.2023.1093053
Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., Brown T.S., Der Nigoghossian C., Zidar D.A., Haythe J., Brodie D., Beckman J.A., Kirtane A.J., Stone G.W., Krumholz H.M., Parikh S.A. 2020. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 75: 2352–2371. doi: 10.1016/j.jacc.2020.03.031
El-Ghiaty M.A., Shoieb S.M., El-Kadi A.O.S. 2020. Cytochrome P450-mediated drug interactions in COVID-19 Patients: Current Findings and Possible Mechanisms. Med Hypotheses. 144: 110033. doi: 10.1016/j.mehy.2020.110033
Fairweather D., Beetler D.J., Di Florio D.N., Musigk N., Heidecker B., Cooper L.T. Jr. 2023. COVID-19, Myocarditis and Pericarditis. Circ Res. 132: 1302–1319. doi: 10.1161/CIRCRESAHA.123.321878
Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., Bikdeli B., Ahluwalia N., Ausiello J.C., Wan E.Y., Freedberg D.E., Kirtane A.J., Parikh S.A., Maurer M.S., Nordvig A.S., Accili D., Bathon J.M., Mohan S., Bauer K.A., Leon M.B., Krumholz H.M., Uriel N., Mehra M.R., Elkind M.S.V., Stone G.W., Schwartz A., Ho D.D., Bilezikian J.P., Landry D.W. 2020. Extrapulmonary Manifestations of COVID-19. Nat Med. 26: 1017–1032. doi: 10.1038/s41591-020-0968-3
Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., Madhur M.S., Tomaszewski M., Maffia P., D'Acquisto F., Nicklin S.A., Marian A.J., Nosalski R., Murray E.C., Guzik B., Berry C., Touyz R.M., Kreutz R., Wang D.W., Bhella D., Sagliocco O., Crea F., Thomson E.C., McInnes I.B. 2020. COVID-19 and the Cardiovascular System: Implications for Risk Assessment, Diagnosis, and Treatment Options. Cardiovasc Res. 116: 1666–1687. doi: 10.1093/cvr/cvaa106
Han Y., Zhu J., Yang L., Nilsson-Payant B.E., Hurtado R., Lacko L.A., Sun X., Gade A.R., Higgins C.A., Sisso W.J., Dong X., Wang M., Chen Z., Ho D.D., Pitt G.S., Schwartz R.E., tenOever B.R., Evans T., Chen S. 2022. SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circ Res. 130:963–977. doi: 10.1161/CIRCRESAHA.121.320518
Husayn S.S., Brown J.D., Presley C.L., Boghean K., Waller J.D. 2022. Hydroxychloroquine Alternatives for Chronic Disease: Response to a Growing Shortage Amid the Global COVID-19 Pandemic. J. Pharm. Pract. 35: 120–125. doi: 10.1177/0897190020942658
Kole C., Stefanou Ε., Karvelas N., Schizas D., Toutouzas K.P. 2024. Acute and Post-Acute COVID-19 Cardiovascular Complications: A Comprehensive Review. Cardiovasc Drugs Ther. 38, 1017–1032. https://doi.org/10.1007/s10557-023-07465-w
Lazzerini P.E., Boutjdir M., Capecchi P.L. 2020. COVID-19, Arrhythmic Risk, and Inflammation: Mind the Gap! Circulation. 142: 7–9. doi: 10.1161/CIRCULATIONAHA.120.047293
Lazzerini P.E., Laghi-Pasini F., Boutjdir M., Capecchi P.L. 2019. Cardioimmunology of Arrhythmias: The Role of Autoimmune and Inflammatory Cardiac Channelopathies. Nat Rev Immunol. 19: 63–64. doi: 10.1038/s41577-018-0098-z
Lazzerini P.E., Laghi-Pasini F., Boutjdir M., Capecchi P.L. 2022. Inflammatory Cytokines and Cardiac Arrhythmias: The Lesson from COVID-19. Nat Rev Immunol. 22: 270–272. doi: 10.1038/s41577-022-00714-3
Li J., Huang Q., Liang Y., Jiang J., Yang Y., Feng J., Tan X., Li T. 2024 The Potential Mechanisms of Arrhythmia in Coronavirus Disease – 2019. Int. J. Med. Sci. 19; 21(7): 1366–1377. doi: 10.7150/ijms.94578
Manolis A.A., Manolis T.A., Apostolopoulos E.J., Apostolaki N.E., Melita H., Manolis A.S. 2021. The Role of the Autonomic Nervous System in Cardiac Arrhythmias: The Neuro-Cardiac Axis, More Foe than Friend? Trends Cardiovasc Med. 31: 290–302. doi: 10.1016/j.tcm.2020.04.011
Manolis A.S., Manolis A.A., Manolis T.A. Apostolopoulos E.J., Papatheou D., Melita H. 2020. COVID-19 Infection and Cardiac Arrhythmias. Trends Cardiovasc Med. 30: 451–460. doi: 10.1016/j.tcm.2020.08.002
Naeije R., Richter M.J., Rubin L.J. 2022. The Physiological Basis of Pulmonary Arterial Hypertension. Eur Respir J. 59(6): 2102334. doi: 10.1183/13993003.02334-2021
Ning Q., Wu D., Wang X., Xi D., Chen T., Chen G., Wang H., Lu H., Wang M., Zhu L., Hu J., Liu T., Ma K., Han M., Luo X. 2022. The Mechanism Underlying Extrapulmonary Complications of the Coronavirus Disease 2019 and its Therapeutic Implication. Signal Transduct Target Ther. 7: 57. doi: 10.1038/s41392-022-00907-1
Nishiga M., Wang D.W., Han Y., Lewis D.B., Wu J.C. 2020. COVID-19 and Cardiovascular Disease: From Basic Mechanisms to Clinical Perspectives. Nat Rev Cardiol. 17: 543–558. doi: 10.1038/s41569-020-0413-9
Patone M., Mei X.W., Handunnetthi L., Dixon S., Zaccardi F., Shankar-Hari M., Watkinson P., Khunti K., Harnden A., Coupland C.A.C., Channon K.M., Mills N.L., Sheikh A., Hippisley-Cox J. 2022. Risks of Myocarditis, Pericarditis, and Cardiac Arrhythmias Associated with COVID-19 Vaccination or SARS-CoV-2 Infection. Nat Med. 28: 410–422. doi: 10.1038/s41591-021-01630-0
Peretto G., Sala S., Rizzo S., De Luca G., Campochiaro C., Sartorelli S., Benedetti G., Palmisano A., Esposito A., Tresoldi M., Thiene G., Basso C., Della Bella P. 2019. Arrhythmias in Myocarditis: State of the Art. Heart Rhythm. 16: 793–801. doi: 10.1016/j.hrthm.2018.11.024
Ruan Q., Yang K., Wang W., Jiang L., Song J. 2020. Clinical Predictors of Mortality Due to COVID-19 Based on an Analysis of Data of 150 Patients from Wuhan, China. Intensive Care Med. 46: 846–848. doi: 10.1007/s00134-020-05991-x
Shang J., Ye G., Shi K., Yu. Wan, Luo C., Aihara H., Geng Q., Auerbach A., Li F. 2020. Structural Basis of Receptor Recognition by SARS-CoV-2. Nature. 581: 221–4. doi: 10.1038/s41586-020-2179-y
Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M.Y., Cooper L.T. Jr, Chahal C.A.A. 2020. Recognizing COVID-19-Related Myocarditis: The Possible Pathophysiology and Proposed Guideline for Diagnosis and Management. Heart Rhythm. 17: 1463–1471. doi: 10.1016/j.hrthm.2020.05.001
Varney J.A., Dong V.S., Tsao T., Sabir M.S., Rivera A.T., Ghula S., Moriles K.E., Cherukuri M.L., Fazal R., Azevedo C.B., Mohamed R.M., Jackson G.R., Fleming S.E., Rochez D.E., Abbas K.S., Shah J.H., Minh L.H.N., Osman F., Rafla S.M., Huy N.T. 2022. COVID-19 and Arrhythmia: An Overview. J Cardiol. 79: 468–475. doi: 10.1016/j.jjcc.2021.11.019
Wang R.S., Loscalzo J. 2023. Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations. Circ Res. 132: 1374–1386. doi: 10.1161/CIRCRESAHA.122.321879
Wong L.R., Perlman S. 2022. Immune Dysregulation and Immunopathology Induced by SARS-CoV-2 and Related Coronaviruses - Are We Our Own Worst Enemy? Nat Rev Immunol. 22: 47–56. doi: 10.1038/s41577-021-00656-2
Yang L., Liu S., Liu J., Zhang Z., Wan X., Huang B., Chen Y., Zhang Y. 2020. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 5:128. doi: 10.1038/s41392-020-00243-2
Zequn Z., Yujia W., Dingding Q., Jiangfang L. 2021. Off-label Use of Chloroquine, Hydroxychloroquine, Azithromycin and Lopinavir/Ritonavir in COVID-19 Risks Prolonging the QT Interval by Targeting the hERG Channel. Eur J Pharmacol. 893:173813. doi: 10.1016/j.ejphar.2020.173813
Zhan Y., Yue H., Liang W., Wu Z. 2022. Effects of COVID-19 on Arrhythmia. J Cardiovasc Dev Dis. 9: 292. doi: 10.3390/jcdd9090292
Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. 2020. COVID-19 and the Cardiovascular System. Nat Rev Cardiol. 17:259–260. doi: 10.1038/s41569-020-0360-5