Reverse Left Ventricular Remodeling in Patients with Multivessel Myocardial Infarction after Revascularization
The role of factors leading to reverse LV remodeling in patients with multivessel ischemic heart disease after percutaneous coronary intervention (PCI) has not been sufficiently studied. The purpose of this article is to provide a brief and concise review of the current understanding of the pathophysiology, clinical predictors, and studies of LV reverse remodeling after complete and incomplete revascularization in patients with multivessel coronary disease. Materials and methods. A systematic review and meta-analysis was conducted in the search systems: eLIBRARY.RU, PubMed, Medline, ResearchGate, Connected papers and Google Scholar mainly from 2019 to 2024 (85.7 %). Results. The cumulative evidence suggests that key factors that can initiate and maintain remodeling processes include myocardial ischemic injury, chronic inflammation, neurohormonal activation, and oxidative stress. A decrease in all these factors can lead to reverse myocardial remodeling. This is possible with complete revascularization during primary PCI, which leads to improved clinical course and reduced 30-day, 1-year and 3-year mortality rates. A combination of biomarkers from different groups may be suitable for predicting reverse remodeling (brain natriuretic peptide precursor-N-terminal natriuretic hormone propeptide, high-sensitivity troponins, C-reactive protein and creatinine kinase), as well as echocardiographic findings, especially 3D-echocardiographic assessments of ventricular volumes, mass and ejection fraction. Conclusion. Complete revascularization is feasible and has great advantages over revascularization of only one infarct-related coronary artery.
Zinsou J., Mansur Ahmed T.A., Perutsky D.N., Pribylov S.A., Belousova O.N. 2024. Reverse Left Ventricular Remodeling in Patients with Multivessel Myocardial Infarction after Revascularization. Challenges in Modern Medicine, 47(3): 293–306 (in Russian). DOI: 10.52575/2687-0940-2024-47-3-293-306
While nobody left any comments to this publication.
You can be first.
Kamyshnikova L.A., Efremova O.A. 2017. Vlijanie soputstvujushhih zabolevanij na remodelirovanie i disfunkciju serdca pri hronicheskoj serdechnoj nedostatochnosti s sohrannoj frakciej vybrosa [Impact of Comorbidities on Cardiac Remodeling and Dysfunction in Chronic Heart Failure with Preserved Ejection Fraction]. Klinicheskaja medicina [Clinical Medicine]. 95(12): 1070–1076. doi: 10.18821/0023-2149-2017-95-12-1070-1076
Kamyshnikova L.A., Efremova O.A. 2012. Strukturno-funkcional'nye izmenenija miokarda u bol'nyh hronicheskoj serdechnoj nedostatochnost'ju pri lechenii spironolaktonom [Structural and Functional Changes in the Myocardium in Patients with Chronic Heart Failure During Treatment with Spironolactone]. Klinicheskaja medicina [Clinical Medicine]. 90(5): 25–28.
Osipova O.A., Bukatov V.V. 2020. Osobennosti techeniya infarkta miokarda s pod``emom segmenta ST u bol`ny`x pozhilogo i starcheskogo vozrasta [Features of the Course of Myocardial Infarction with ST Segment Elevation in Elderly and Senile Patients]. Nauchny`e rezul`taty` biomedicinskix issledovanij [Scientific Results of Biomedical Research]. 6(3): 402–416. doi: 10.18413/2658-6533-2020-6-3-0-10
Barberato S.H., Souza A.M., Costantini C.O., Costantini C.R.F. 2013. Relação E/ e`na predição da remodelação do ventrículo esquerdo após infarto agudo do miocárdio (E/ e` ratio prediction of left ventricular remodeling after acute myocardial infarction). Rev bras ecocardiogr imagem cardiovasc. 26(3): 189–195.
Berezin A.E., Berezin A.A. 2020. Adverse Cardiac Remodeling after Acute Myocardial Infarction: Old and New Biomarkers. Dis Markers. 2020: 1215802. doi: 10.1155/2020/1215802.
Boukenna M., Rougier J.S., Aghagolzadeh P., Pradervand S., Guichard S., Hämmerli A.F., Pedrazzini T., Abriel H. 2023. Multiomics Uncover the Proinflammatory Role of Trpm4 Deletion after Myocardial Infarction in Mice. Am. J. Physiol. Heart. Circ. Physiol. 1; 324(4): H504-H518. doi: 10.1152/ajpheart.00671.2022.
Bryer E., Stein E., Goldberg S. 2020. Multivessel Coronary Artery Disease: The Limitations of a "One-Size-Fits-All" Approach. Mayo. Clin. Proc. Innov. Qual. Outcomes. 4(6): 638–641. doi: 10.1016/j.mayocpiqo.2020.07.014.
Bugger H., Pfeil K. 2020. Mitochondrial ROS in Myocardial Ischemia Reperfusion and Remodeling. Biochim. Biophys. Acta. Mol. Basis. Dis. 1866(7): 165768. doi: 10.1016/j.bbadis.2020.165768.
Chudý M., Goncalvesová E. 2022. Prediction of Left Ventricular Reverse Remodelling: A Mini Review on Clinical Aspects. Cardiology. 147(5–6): 521–528. doi: 10.1159/000526986.
Daubert M.A., Massaro J., Liao L., Pershad A., Mulukutla S., Magnus Ohman E., Popma J., O'Neill W.W., Douglas P.S. 2015. High-Risk Percutaneous Coronary Intervention is Associated with Reverse Left Ventricular Remodeling and Improved Outcomes in Patients with Coronary Artery Disease and Reduced Ejection Fraction. Am. Heart. J. 170: 550–558. doi: 10.1016/j.ahj.2015.06.013.
Diletti R., den Dekker W.K., Bennett J., Schotborgh C.E., van der Schaaf R., Sabaté M., Moreno R., Ameloot K., van Bommel R., Forlani D., van Reet B., Esposito G., Dirksen M.T., Ruifrok W.P.T., Everaert B.R.C., Van Mieghem C., Elscot J.J., Cummins P., Lenzen M., Brugaletta S., Boersma E., Van Mieghem N.M.; BIOVASC Investigators. 2023. Immediate Versus Staged Complete Revascularisation in Patients Presenting with Acute Coronary Syndrome and Multivessel Coronary Disease (BIOVASC): a Prospective, Open-Label, Non-Inferiority, Randomised Trial. Lancet. 401(10383): 1172–1182. doi: 10.1016/S0140-6736(23)00351-3.
Heusch G. 2020. Myocardial Ischaemia-Reperfusion Injury and Cardioprotection in Perspective. Nat. Rev. Cardiol. 17(12): 773–789. doi: 10.1038/s41569-020-0403-y.
Hoque M.M., Gbadegoye J.O., Hassan F.O., Raafat A., Lebeche D. 2024. Cardiac Fibrogenesis: an Immuno-Metabolic Perspective. Front Physiol. Mar 21; 15: 1336551. doi: 10.3389/fphys.2024.1336551.
Huang-Chung Chen, Tzu-Hsien Tsai, Fang H.Y., Sun C.K., Lin Y.C., Leu S., Chung S.Y., Chai H.T., Yang C.H., Hsien Y.K., Wu C.J., Yip H.K. 2010. Benefit of Revascularization in Non-Infarct-Related Artery in Multivessel Disease Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Int. Heart. J. 51(5): 319–24. doi: 10.1536/ihj.51.319.
Jiang H., Fang T., Cheng Z. 2023. Mechanism of Heart Failure after Myocardial Infarction. J. Int. Med. Res. Oct; 51(10): 3000605231202573. doi: 10.1177/03000605231202573.
Kyhl K., Ahtarovski K.A., Nepper-Christensen L., Ekström K., Ghotbi A.A., Schoos M., Göransson C., Bertelsen L., Helqvist S., Holmvang L., Jørgensen E., Pedersen F., Saunamäki K., Clemmensen P., De Backer O., Høfsten D.E., Køber L., Kelbæk H., Vejlstrup N., Lønborg J., Engstrøm T. 2019. Complete Revascularization Versus Culprit Lesion Only in Patients With ST-Segment Elevation Myocardial Infarction and Multivessel Disease: A DANAMI-3-PRIMULTI Cardiac Magnetic Resonance Substudy. JACC Cardiovasc Interv. 12(8): 721–730. doi: 10.1016/j.jcin.2019.01.248.
Liu Y., Cui C., Li Y., Wang Y., Hu Y., Bai M., Huang D., Zheng Q., Liu L. 2022. Predictive Value of the Echocardiographic Noninvasive Myocardial Work Index for Left Ventricular Reverse Remodeling in Patients with Multivessel Coronary Artery Disease after Percutaneous Coronary Intervention. Quant Imaging Med. Surg. Jul; 12(7): 3725–3737. doi: 10.21037/qims-21-1066.
Liu Z., Liu L., Cheng J., Zhang H. 2021. Risk Prediction Model Based on Biomarkers of Remodeling in Patients with Acute Anterior ST-Segment Elevation Myocardial Infarction. Med. Sci. Monit. 227: e927404. doi: 10.12659/MSM.927404.
Lotti R., D.E. Marzo V., Della Bona R., Porto I., Rosa G.M. 2023. Speckle-Tracking Echocardiography: State of Art and its Applications. Minerva Med. 114(4): 500–515. doi: 10.23736/S0026-4806.21.07317-1.
Martins D., Garcia L.R., Queiroz D.A.R., Lazzarin T., Tonon C.R., Balin P.D.S., Polegato B.F., de Paiva S.A.R., Azevedo P.S., Minicucci M.F., Zornoff L. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants (Basel). 2022 Nov 30; 11(12): 2371. doi: 10.3390/antiox11122371.
Mehta S.R., Wood D.A., Storey R.F., Mehran R., Bainey K.R., Nguyen H., Meeks B., Di Pasquale G., López-Sendón J., Faxon D.P., Mauri L., Rao S.V., Feldman L., Steg P.G., Avezum Á., Sheth T., Pinilla-Echeverri N., Moreno R., Campo G., Wrigley B., Kedev S., Sutton A., Oliver R., Rodés-Cabau J., Stanković G., Welsh R., Lavi S., Cantor W.J., Wang J., Nakamya J., Bangdiwala S.I., Cairns J.A.; 2019. Complete Trial Steering Committee and Investigators. Complete Revascularization with Multivessel PCI for Myocardial Infarction. N. Engl. J. Med. Oct 10; 381(15): 1411–1421. doi: 10.1056/NEJMoa1907775.
Ndrepepa G., Kastrati A. 2023. Coronary No-Reflow after Primary Percutaneous Coronary Intervention-Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J. Clin. MedAug 27; 12(17): 5592. doi: 10.3390/jcm12175592.
Nogueira-Garcia B., Vilela M., Oliveira C., Caldeira D., Martins A.M., Nobre Menezes M. 2024. A Narrative Review of Revascularization in Chronic Coronary Syndrome/Disease: Concepts and Misconceptions. J. Pers. Med. May 10; 14(5): 506. doi: 10.3390/jpm14050506.
Obokata M., Reddy Y.N.V., Borlaug B.A. 2020. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc Imaging. Jan; 13(1 Pt 2): 245–257. doi: 10.1016/j.jcmg.2018.12.034.
Popa D.M., Macovei L., Moscalu M., Sascău R.A., Stătescu C. 2023. The Prognostic Value of Creatine Kinase-MB Dynamics after Primary Angioplasty in ST-Elevation Myocardial Infarctions. Diagnostics. 13(19): 3143. doi.org/10.3390/diagnostics13193143.
Ralapanawa U., Sivakanesan R. 2021. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health. Jun; 11(2): 169–177. doi: 10.2991/jegh.k.201217.001.
Rumiz E., Valero E., Fernandez C., Vilar J.V., Pellicer M., Cubillos A., Berenguer A., Facila L., Vaño J., Nuñez J. 2024. In-Hospital Versus After-Discharge Complete Revascularization in Patients with ST Segment Elevation Myocardial Infarction and Multivessel Disease. REVIVA-ST trial. PLoS One. May 14; 19(5): e0303284. doi: 10.1371/journal.pone.0303284.
Frantz S., Hundertmark M.J., Schulz-Menger J., Bengel F.M., Bauersachs J. 2022. Left Ventricular Remodelling Post-Myocardial Infarction: Pathophysiology, Imaging, and Novel Therapies. Eur. Heart. J. 43(27): 2549–2561. doi: 10.1093/eurheartj/ehac223.
Tsao C.W., Aday A.W., Almarzooq Z.I., Anderson C.A.M., Arora P., Avery C.L., Baker-Smith C.M., Beaton A.Z., Boehme A.K., Buxton A.E., Commodore-Mensah Y., Elkind M.S.V., Evenson K.R., Eze-Nliam C., Fugar S., Generoso G., Heard D.G., Hiremath S., Ho J.E., Kalani R., Kazi D.S., Ko D., Levine D.A., Liu J., Ma J., Magnani J.W., Michos E.D., Mussolino M.E., Navaneethan S.D., Parikh N.I., Poudel R., Rezk-Hanna M., Roth G.A., Shah N.S., St-Onge M.P., Thacker E.L., Virani S.S., Voeks J.H., Wang N.Y., Wong N.D., Wong S.S., Yaffe K., Martin S.S.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2023. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation. 147(8): e93-e621. doi: 10.1161/CIR.0000000000001123.
Węgiel M., Rakowski T. 2021. Circulating Biomarkers as Predictors of Left Ventricular Remodeling after Myocardial Infarction. Postepy Kardiol Interwencyjnej. 17(1): 21–32. doi: 10.5114/aic.2021.104764.
Wood D.A., Cairns J.A., Wang J., Mehran R., Storey R.F., Nguyen H., Meeks B., Kunadian V., Tanguay J.F., Kim H.H., Cheema A., Dehghani P., Natarajan M.K., Jolly S.S., Amerena J., Keltai M., James S., Hlinomaz O., Niemela K., Al Habib K., Lewis B.S., Nguyen M., Sarma J., Dzavik V., Della Siega A., Mehta S.R.; COMPLETE Investigators. 2021. Timing of Staged Nonculprit Artery Revascularization in Patients With ST-Segment Elevation Myocardial Infarction: COMPLETE Trial. J. Am. Coll. Cardiol. 74(22): 2713–2723. doi: 10.1016/j.jacc.2019.09.051.
Wu V.C., Kitano T., Chu P.H., Takeuchi M. 2023. Left Ventricular Volume and Ejection Fraction Measurements by Fully Automated 3D Echocardiography Left Chamber Quantification Software Versus CMR: A Systematic Review and Meta-Analysis. J. Cardiol. Jan; 81(1): 19–25. doi: 10.1016/j.jjcc.2022.08.007.
Yin X., Yin X., Pan X., Zhang J., Fan X., Li J., Zhai X., Jiang L., Hao P., Wang J., Chen Y. 2023. Post-Myocardial Infarction Fibrosis: Pathophysiology, Examination, and Intervention. Front Pharmacol. Mar 28; 14: 1070973. doi: 10.3389/fphar.2023.1070973.
Yousif Ahmad, Petrie M.C., Jolicoeur E.M., Madhavan M.V., Velazquez E.J., Moses J.W., Lansky A.J., Stone G.W. 2022. PCI in Patients with Heart Failure: Current Evidence, Impact of Complete Revascularization, and Contemporary Techniques to Improve Outcomes. Journal of the Society for Cardiovascular Angiography & Interventions, Volume 1, Issue 2, 2022, 100020, ISSN 2772-9303, doi.org/10.1016/j.jscai.2022.100020.
Zhang S., Zhou Q., Li X., Wang Y., Ma L., Huang D., Li G. 2024. Value of 2D Speckle Tracking Technique Combined with Real-Time 3-Dimensional Echocardiography in the Evaluation of the Right Atrial Function in Patients with 3-Branch Coronary Artery Disease without Myocardial Infarction. Medicine (Baltimore). May 3; 103(18): e38058. doi: 10.1097/MD.0000000000038058.
The work was carried out without external sources of funding.