Mechanisms of Development of Heart Failure in Chronic Kidney Disease
Heart failure is widespread and associated with a high mortality rate in chronic kidney disease. However, the pathophysiology of cardiac dysfunction in chronic kidney disease, especially in latent renal disease, is poorly understood. Disability and high mortality in patients with cardiorenal syndrome dictate the need to study the mechanisms of development of heart failure in chronic kidney disease. This literature search review used PubMed and Google Scholar to identify the mechanisms of heart failure in chronic kidney disease. The study of scientific data over the past 5 years has shown that cardiorenal syndrome, which has a complex and multifactorial pathophysiology, is a clinical problem. Diagnostic, prognostic, and therapeutic measures for cardiorenal syndrome are limited. Modern pharmacological methods of treatment are effective, but insufficient to satisfactorily influence or mitigate the progression of cardiorenal syndrome, therefore, the discovery of new drugs and new therapeutic strategies for cardiorenal syndrome is a high priority task. Treatment of patients with cardiorenal syndrome should be comprehensive and continuous, aimed at eliminating physical and psychosocial symptoms.
Efremova O.A., Kamyshnikova L.A., Obolonkova N.I., Sviridova M.S., Golivets T.P., Khamnagadayev I.I. 2022. Mechanisms of Development of Heart Failure in Chronic Kidney Disease. Challenges in Modern Medicine. 45 (3): 237–252. DOI: 10.52575/2687-0940-2022-45-3-237-252
While nobody left any comments to this publication.
You can be first.
Agrawal A., Naranjo M., Kanjanahattakij N., Rangaswami J., Gupta Sh. 2019. Cardiorenal syndrome in heart failure with preserved ejection fraction–an under-recognized clinical entity. Heart Failure Reviews. 24: 421–437. doi: 10.1007/s10741-018-09768-9.
Barrows I.R., Ramezani A., Raj D.S. 2019. Inflamation, Immuninty, and Oxidative Stress in Hypertension-Partners in Crime? Advances in Chronic Kidney Disease. 26: 122–130. doi: 10.1053/j.ackd.2019.03.001.
Black A.P., Anjos J.S., Cardozo L., Carmo F.L., Dolenga C.J., Nakao L.S., de Carvalho Ferreira D., Rosado A., Carraro Eduardo J.C., Mafra D. 2018. Does low-protein diet influence theuremic toxin serum levels from the gut microbiota in nondialysischronic kidney disease patients? Journal of Renal Nutrition. 28: 208–214. doi: 10.1053/j.jrn.2017.11.007.
Caio-Silva W., da Silva Dias D., Junho C.V.C., Panico K., Neres-Santos R.S., Pelegrino M.T., Pieretti J.C., Seabra A.B., De Angelis K., Carneiro-Ramos M.S. 2020. Characterization of the Oxidative Stress in Renal Ischemia/Reperfusion-Induced Cardiorenal Syndrome Type 3. Bio Med Research International. 2020: 1605358. doi: 10.1155/2020/1605358.
Cha R.H., Kang S.W., Park C.W., Cha D.R., Na K.Y., Kim S.G., Yoon S.A., Han S.Y., Chang J.H., Park S.K., Lim C.S., Kim Y.S. 2016. A randomized, controlled trial of oral intestinal sor-bent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clinical Journal of the American Society of Nephrology. 11: 559–567. doi: 10.2215/CJN.12011214.
Chacon-Portillo M.A., Acharya T., Janardhanan R. 2021. Imaging in heart failure with preserved ejection fraction: insights into echocardiography and cardiac magnetic resonance imaging. Rev. Cardiovascular Medicine. 22 (1): 11–24. doi: 10.31083/j.rcm.2021.01.134.
Chen Y., Zheng Y., Iyer S.R., Harders G.E., Pan S., Chen H.H., Ichiki T., Burnett J.C. Jr., Sangaralingham S.J. 2019. C53: A novel particulate guanylyl cyclaseB receptor activator that has sustained activity in vivo with anti-fibrotic actions in human cardiac and renal fibroblasts. Journal of Molecular and Cellular Cardiology. 130: 140–150. C53: doi: 10.1016/j.yjmcc.2019.03.024.
Chinnappa S., White E., Lewis N., Baldo O., Tu Y.K., Glorieux G., Vanholder R., El Nahas M., Mooney A. 2018. Early and asymptomatic cardiac dysfunction in chronic kidney disease, Nephrology Dialysis Transplantation. 33: 450–458. doi: 10.1093/ndt/gfx064.
Chrysohoou C., Bougatsos G., Magkas N., Skoumas J., Kapota A., Kopelias J., Bliouras N., Tsioufis K., Petras D., Tousoulis D. 2020. Peritoneal dialysis as a therapeutic solution in elderly patients with cardiorenal syndrome and heart failure: A case-series report. The Hellenic Journal of Cardiology. 61 (2): 73–77. doi: 10.1016/j.hjc.2019.04.010.
Chu S., Mao X., Guo H., Wang L., Li Z., Zhang Y., Wang Y., Wang H., Zhang X., Peng W. 2017. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats. Free Radical Research. 51: 237–252. doi: 10.1080/10715762.2017.1296575.
Clegg D.J., Cody M., Palmer B.F. 2017. Challenges in treating cardio-vascular disease: Restricting sodium and managing hyperkalemia. Mayo Clinic Proceedings. 92: 1248–1260. doi: 10.1016/j.mayocp.2017.04.006.
Coresh J., Heerspink H.J.L., Sang Y., Matsushita K., Arnlov J., Astor B.C., Black C., Brunskill N.J., Carrero J.J., Feldman H.I., Fox C.S., Inker L.A., Ishani A., Ito S., Jassal S., Konta T., Polkinghorne K., Romundstad S., Solbu M.D., Stempniewicz N., Stengel B., Tonelli M., Umesawa M., Waikar S.S., Wen C.P., Wetzels J.F.M., Woodward M., Grams M.E., Kovesdy C.P., Levey A.S., Gansevoort R.T. 2019. Chronic Kidney Disease Prognosis Consortium and Chronic Kidney Disease Epidemiology Collaboration. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. The Lancet Diabetes & Endocrinology. 7: 115–127. doi: 10.1016/S2213-8587(18)30313-9.
Coresh J., 2017. Update on the Burden of CKD. Journal of the American Society of Nephrology. 28: 1020–1022. doi: 10.1681/ASN.2016121374.
Costanzo M.R. 2020. The Cardiorenal Syndrome in Heart Failure. Heart Failure Clinics. 16: 81–97. doi: 10.1016/j.hfc.2019.08.010.
Cowger J.A., Radjef R. 2018. Advanced heart failure therapies andcardiorenal syndrome. Advances in Chronic Kidney Disease. 25: 443–453 doi: 10.1053/j.ackd.2018.08.012.
Daenen K., Andries A., Mekahli D., Van Schepdael A., Jouret F., Bammens B. 2019. Oxidative stress in chronic kidney disease. Pediatric nephrology. 34 (6): 975–991. doi: 10.1007/s00467-018-4005-4.
Dhaun N., Goddard J., Webb D.J. 2006. The Endothelin System and Its Antagonism in Chronic Kidney Disease. JASN. 17 (4): 943–955. doi: 10.1681/ASN.2005121256.
Dincer N., Dagel T., Afsar B., Covic A., Ortiz A., Kanbay M. 2019. The effect of chronic kidney disease on lipid metabolism. InternationalUrology and Nephrology. 51: 265–277. doi: 10.1007/s11255-018-2047-y.
Djudjaj S., Boor P. 2019. Cellular and molecular mechanisms of kidney fibrosis. Molecular Aspects of Medicine. 65: 16–36. doi: 10.1016/j.mam.2018.06.002.
Duni A., Liakopoulos V., Rapsomanikis K.P., Dounousi E. 2017. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden? Oxidative Medicine and Cellular Longevity. 2017: 9036450. doi: 10.1155/2017/9036450.
Efremova O.A., Kamyshnikova L.A., Veysalov S.E., Sviridova M.S., Obolonkova N.I., Maslennikov A.A., Wuraola M. 2020. Imbalance in the oxidative stress system – antioxidant protection in patients with chronic pyelonephritis depending on the course of the disease. International journal of pharmaceutical research. 12: 1086–1091. doi: 10.31838/ijpr/2020.SP1.161
Efremova O.A., Kamyshnikovа L.A., Weisalov S.E., Sviridova M.S. 2019. Parameters of structural and functional condition of the heart and great vessels in patients with chronic pyelonephritis, depends on the course of the disease. Belgorod State University Scientific Bulletin. Medicine. Pharmacy series. 42 (4): 375–389 (in Russ., English abstract). doi 10.18413/2075-4728-2019-42-4-375-389
Fan P.C., Chang C.H., Chen Y.C. 2018. Biomarkers for acute cardio-renal syndrome. Nephrology (Carlton). 23 (l4): 68–71. doi: 10.1111/nep.13473. PMID: 30298648.
Fu S., Zhao S., Ye P., Luo L. 2018. Biomarkers in cardiorenal syn-dromes. Bio Med Research International. 9617363. doi: 10.1155/2018/9617363.
Fujii H., Kono K., Nishi S. 2019. Characteristics of coronary artery disease in chronic kidney disease. Journal of Clinical & Experimental Nephrology. 23: 725–732. doi: 10.1007/s10157-019-01718-5.
Gonzalez-Vicente A., Hong N.J., Garvin J.L. 2019. Effects of reactive oxygen species on renal tubular transport. The American Journal of Physiology: Renal Physiology. 317 (2): F444-F455. doi: 10.1152/ajprenal.00604.2018.
Grande D., Terlizzese P., Iacoviello M. 2017. Role of imaging in theevaluation of renal dysfunction in heart failure patients. World Journal of Nephrology. 6: 123–131. doi: 10.5527/wjn.v6.i3.123.
Han X., Zhang S., Chen Z., Adhikari B.K., Zhang Y., Zhang J., Sun J., Wang Y. 2020. Cardiac biomarkers of heart failure in chronic kidney disease. Clinica Chimica Acta. 510: 298–310. doi: 10.1016/j.cca.2020.07.040.
Harrison J.C., Smart S.D.G., Besley E.M.H., Kelly J.R., Read M.I., Yao Y., Sammut I.A. 2020. A Clinically Relevant Functional Model of Type-2 Cardio-Renal Syndrome with Paraventricular Changes consequent to Chronic Ischaemic Heart Failure. Scientific Reports. 10: 1261. doi: 10.1038/s41598-020-58071-x.
Huang Y.M., Li W.W., Wu J., Han M., Li B.H. The diagnosticvalue of circulating microRNAs in heart failure. Experimental and Thera-peutic Medicine. 2019; 17: 1985–2003. doi: 10.3892/etm.2019.7177.
Hur J., Choi B.W. 2017. Cardiac CT imaging for ischemic stroke: Cur-rent and evolving clinical applications. Radiology. 283: 14–28. doi: 10.1148/radiol.2016152043.
Ishigami J., Cowan L.T., Demmer R.T., Grams M.E., Lutsey P.L., Carrero J.J., Coresh J., Matsushita K. 2020. Incident Hospitalization with Major Cardiovascular Diseases and Subsequent Risk of ESKD: Implications for Cardiorenal Syndrome. JASN. 31 (2): 405–414. doi: 10.1681/ASN.2019060574.
Jing W., Vaziri N.D., Nunes A., Suematsu Y., Farzaneh T., Khazaeli M., Moradi H. 2017. LCZ696 (Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD. American Journal of Translational Research. 9: 5473–5484. PMID: 29312499; PMCID: PMC5752897.
Junho C.V.C., Caio-Silva W., Trentin-Sonoda M., Carneiro-Ramos M.S. 2020. An Overview of the Role of Calcium/Calmodulin-Dependent Protein Kinase in Cardiorenal Syndrome. Frontiers in Physiology. 11: 735. doi: 10.3389/fphys.2020.00735.
Kamyshnikova L.A., Efremova O.A., Pivovar R.S. 2017. Features of cardiorenal relationship at patients with the chronic disease of kidneys. The current state of the problem. Belgorod State University Scientific bulletin. Medicine. Pharmacy. 5 (254): 13–21 (in Russ., English abstract).
Kumar U., Wettersten N., Garimella P.S. 2019. Cardiorenal Syndrome: Pathophysiology. Cardiology Clinics. 37 (3): 251–265. doi: 10.1016/j.ccl.2019.04.001.
Li L., Lai E.Y., Luo Z., Solis G., Griendling K.K., Taylor W.R., Jose P.A., Wellstein A., Welch W.J., Wilcox C.S. 2017. Superoxide and hydrogen peroxide counterregulate myogenic contractions in renal afferent arterioles from a mouse model of chronic kidney disease. Kidney International. 92: 625–633. doi: 10.1016/j.kint.2017.02.009.
Liakopoulos V., Roumeliotis S., Zarogiannis S., Eleftheriadis T., Mertens P.R. 2019. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin Dial. 32 (1): 58–71. doi: 10.1111/sdi.12745.
Liu H.J., Liu B. 2018. Inhibition of MicroRNA-23 contributes to the isoflurane-mediated cardioprotection against oxidative stress. Cardiovascular Toxicology. 18: 450–458. doi: 10.1007/s12012-018-9455-1.
Lu W., Booz G.W., Fan F., Wang Y., Roman R.J. 2018. Oxidative stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Frontiers in Physiology. 16: 105. doi: 10.3389/fphys.2018.00105.
Magaye R.R., Savira F., Hua Y., Kelly D.J., Reid C., Flynn B., Liew D., Wang B.H. 2019. The role of dihydrosphingolipids in disease. Cellular and Molecular Life Sciences. 76 (6): 1107–1134. doi: 10.1007/s00018-018-2984-8.
McCullough P.A. 2021. Anemia of cardiorenal syndrome. Kidney International Supplements. 11 (1): 35–45. doi: 10.1016/j.kisu.2020.12.001.
Medvedeva M.V. 2021. Associations of rs2305948 and rs1870377 polymorphic variants of the vascular endothelial growth factor receptor type 2 (KDR) gene with the risk of coronary heart disease. Research Results in Biomedicine. 7 (1): 32–43 (in Russian). doi: 10.18413/2658-6533-2020-7-1-0-3
Melnyk A.А. Cardiorenal syndrome: diagnosis and treatment. Pochki. 2017. 6: 2–14 (in Russ., English abstract).
Nallu A., Sharma S., Ramezani A., Muralidharan J., Raj D. 2017. Gutmicrobiome in chronic kidney disease: Challenges and opportunities.Translational Research. 179: 24–37. doi: 10.1016/j.trsl.2016.04.007.
Orvalho J.S., Cowgill L.D. 2017. Cardiorenal Syndrome: Diagnosis and Management. Veterinary Clinics of North America: Small Animal Practice. 47 (5): 1083–1102. doi: 10.1016/j.cvsm.2017.05.004.
Pavlakou P., Liakopoulos V., Eleftheriadis T., Mitsis M., Dounousi E. 2017. Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. Oxidative Medicine and Cellular Longevity. 2017: 6193694. doi: 10.1155/2017/6193694.
Peterson S.J., Choudhary A., Kalsi A.K., Zhao Sh., Alex R., Abraham N.G. 2020. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics. 10 (11): 976. doi: 10.3390/diagnostics10110976.
Petra E., Zoidakis J., Vlahou A. 2019. Protein biomarkers for cardiorenal syndrome. Expert Rev Proteomics. 16 (4): 325–336. doi: 10.1080/14789450.2019.1592682.
Raina R., Nair N., Chakraborty R., Nemer L., Dasgupta R., Varian K. 2020. An Update on the Pathophysiology and Treatment of Cardiorenal Syndrome. Cardiology Research. 11 (2): 76–88. doi: 10.14740/cr955.
Rangaswami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezue K., Molitch M., Mullens W., Ronco C., Tang W.H.W., McCullough P.A. 2019. American Heart Association Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement from the American Heart Association. Circulation. 139 (16): e840-e878. doi: 10.1161/CIR.0000000000000664.
Ronco C., Bellasi A., Di Lullo L. 2018. Cardiorenal Syndrome: An Overview. Adv. Chronic. Kidney Dis. 25 (5): 382–390. doi: 10.1053/j.ackd.2018.08.004.
Ronco C., Di Lullo L. 2014. Cardiorenal syndrome. Heart Failure Clinics. 10: 251–280. doi: 10.1016/j.hfc.2013.12.003.
Roumeliotis S., Eleftheriadis T., Liakopoulos V. 2019. Is oxidative stress an issue in peritoneal dialysis? Semin Dial. 32 (5): 463–466. doi: 10.1111/sdi.12818.
Rubinstein J., Sanford D. 2019. Treatment of cardiorenal syndrome. Cardiology Clinics. 37: 267–273. doi: 10.1016/j.ccl.2019.04.002.
Sagoo M.K., Gnudi L. 2018. Diabetic nephropathy: Is there a role for oxidative stress? Free Radical Biology and Medicine. 20: 50–63. doi: 10.1016/j.freeradbiomed.2017.12.040.
Saito Yo. 2020. The role of the PlGF/Flt-1 signaling pathway in the cardiorenal connection, Journal of Molecular and Cellular Cardiology. 151: 106–112. doi: 10.1016/j.yjmcc.2020.10.001.
Sárközy M., Kovács Z.Z.A., Kovács M.G., Gáspár R., Szűcs G., Dux L. 2018. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Frontiers in Physiology. 9: 1648. doi: 10.3389/fphys.2018.01648.
Savira F., Kompa A.R., Edgley A.J., Jucker B.M., Willette R.N., Kelly D.J., Wang B.H. 2020 RE: ASK1, a new target in treating cardiorenal syndrome (CRS). International Journal of Cardiology. 316: 207. doi: 10.1016/j.ijcard.2020.05.050.
Savira F., Magaye R., Liew D., Reid C., Kelly D.J., Kompa A.R., Sangaralingham S.J., Burnett J.C. Jr., Kaye D., Wang B.H. 2020. Cardiorenal syndrome: multi-organ dysfunction involving the heart, kidney and vasculature. British Journal of Pharmacology. 177 (13): 2906–2922. doi: 10.1111/bph.15065.
Schei J., Fuskevåg O.M., Stefansson V.T.N., Solbu M.D., Jenssen T.G., Eriksen B.O., Melsom T. 2017. Urinary markers of oxidative stress Are Associated with Albuminuria but Not GFR Decline. Kidney International Reports. 3: 573–582. doi: 10.1016/j.ekir.2017.11.020.
Seliger S. 2020. The Cardiorenal Syndrome: Mechanistic Insights and Prognostication with Soluble Biomarkers. Current Cardiology Reports. 22: 114. doi: 10.1007/s11886-020-01360-8.
Takahama H., Kitakaze M. 2017. Pathophysiology of cardiorenal syndrome in patients with heart failure: potential therapeutic targets. Am. J. Physiol. Heart. Circ. Physiol. 313 (4): H715–H721. doi: 10.1152/ajpheart.00215.2017.
Uduman J. 2018. Epidemiology of Cardiorenal Syndrome. Advances in Chronic Kidney Disease. 25 (5): 391–399. doi: 10.1053/j.ackd.2018.08.009.
Vakulenko L.I. 2019. 24-hour blood pressure profile in children with chronic pyelonephritis and chronic kidney disease stages I–III. Počki. 8 (3): 139–145. doi: 10.22141/2307-1257.8.3.2019.176451
Vamos M., Nyolczas N., Bari Z., Bogyi P., Muk B., Szabo B., Ancsin B., Kiss R.G., Duray G.Z. 2018. Refined heart failure detection algorithm for improved clinical reliability of OptiVol alerts in CRT-D recipients. Cardiol. J. 25 (2): 236–244. doi: 10.5603/CJ.a2017.0077.
Virzì G.M., de Cal M., Day S., Brocca A., Cruz D.N., Castellani C., Cantaluppi V., Bolin C., Fedrigo M., Thiene G., Valente M., Angelini A., Vescovo G., Ronco C. 2015. Pro-apoptotic effects of plasma from patients with cardiorenal syndrome on human tubular cells. American Journal of Nephrology. 41: 474–484. doi: 10.1159/000438459.
Wang Y., Zhao R., Liu D., Deng W., Xu G., Liu W., Rong J., Long X., Ge J., Shi B. 2018. Exosomes Derived from miR-214-Enriched Bone Marrow-Derived Mesenchymal Stem Cells Regulate Oxidative Damage in Cardiac Stem Cells by Targeting CaMKII. Oxid. Med. Cell. Longev. 2018: 4971261. doi: 10.1155/2018/4971261.
Wong M.H., Samal A.B., Lee M., Vlach J., Novikov N., Niedziela-Majka A., Feng J.Y., Koltun D.O., Brendza K.M., Kwon H.J., Schultz B.E., Sakowicz R., Saad J.S., Papalia G.A. 2019. The KN-93 molecule inhibits Calcium/Calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM. Journal of Molecular Biology. 431: 1440–1459. doi: 10.1016/j.jmb.2019.02.001.
Zhang S., Tan X., Chen Y., Zhang X. 2017. Postconditioning protects renal fibrosis by attenuation oxidative stress-induced mitochondrial injury. The Nephrology Dialysis Transplantation.
32: 1628–1636. doi: 10.1093/ndt/gfw469.