Clinical and pathological patterns of diffuse alveolar damage due to COVID-19 in patients requiring respiratory support
Acute respiratory distress syndrome and respiratory failure are the main life-threatening conditions in patients with COVID-19. The main reason is, first of all, impaired lung perfusion. Non-invasive ventilation of the lungs can eliminate hypoxemia and reduce inspiratory efforts. The use of mechanical ventilation to prevent self-induced lung injury (P-SILI) is considered as an optimization option. The leading characteristic of the progression of COVID-19 is the gradual transition from edema or atelectasis to less reversible structural changes in the lungs, namely fibrosis. As a result, the mechanics of breathing is disturbed, PCO2 in the arterial blood rises, the work of the respiratory muscles decreases, and there is no response to positive pressure at the end of exhalation in the prone position.
Khodosh E.M., Ivakhno I.V., Efremova O.A., Obolonkova N.I., Golivets T.P., Khamnagadaev I.I. 2022. Clinical and pathological patterns of diffuse alveolar damage due to COVID-19 in patients requiring respiratory support. Challenges in Modern Medicine. 45 (1): 39–54 (in Russian). DOI: 10.52575/2687-0940-2022-45-1-39-54
While nobody left any comments to this publication.
You can be first.
Avdeev S.N. i dr. 2014. Intensivnaya terapiya v pul`monologii [Intensive Care in Pulmonology]. Pod red. S.N. Avdeeva. Rossijskoe respiratornoe o-vo. Moskva. Atmosfera, 304 c.
Bolevich C.B., Bolevich S.S. 2020. Kompleksny`j mexanizm razvitiya SOVID-19 [Complex mechanism of COVID-19 development]. Sechenovskij vestnik. 11 (2): 50–61. https://doi.org/10.47093/2218-7332.2020.11.2.50-61
Gavrilova A.A., Boncevich R.A., Prozorova G.G., Kompaniecz O.G., Kirichenko A.A., Krotkova I.F., Mironenko E.V., Luchinina E.V., Shagieva T.M., Bary`sheva V.O., Ketova G.G., Marty`nenko I.M., Shestakova N.V., Galkina I.P., Maksimov M.L., Osipova O.A., Milyutina E.V. 2019. Sravnitel`ny`j analiz znanij vrachej s razny`m stazhem raboty` po voprosam terapii vnebol`nichnoj pnevmonii [A comparative analysis of physicians' basic knowledge with different work experience in the treatment of community-acquired pneumonia]. Proekt «KNOCAP», II faza (2017–2019). Nauchny`e rezul`taty` biomedicinskix issledovanij. 5 (4): 78–92. doi: 10.26641/2307-0404.2020.1.200402.
Glumcher F.S. 2016. Ostry`j respiratorny`j distress-sindrom: opredelenie, patogenez, terapiya [Acute Respiratory Distress Syndrome]. Mіstecztvo lіkuvannya. S. 22–31. https://m-l.com.ua/?aid=362.
Gly`bochko P.V., Fomin V.V., Avdeev S.N., Moiseev S.V., Yavorovskij A.G., Brovko M.Yu., Umbetova K.T., Aliev V.A., Bulanova E.L., Bondarenko I.B., Volkova O.S., Gajnitdinova V.V., Gneusheva T.Yu., Dubrovin K.V., Kapustina V.A., Kraeva V.V., Merzhoeva Z.M., Nuralieva G.S., Nogtev P.V., Panasyuk V.V., Politov M.E., Popov A.M, Popova E.N., Raspopina N.A, Royuk V.V., Sorokin Yu.D., Trushenko N.V., Xalikova E.Yu., Czareva N.A., Chikina S.Yu., Chichkova N.V., Akulkina L.A., Bulanov N.M., Ermolova L.A., Zy`kova A.S., Kitbalyan A.A., Moiseev A.S., Potapov P.P., Tao E.A., Sholomova V.I., Shhepalina A.A., Yakovleva A.A. 2020. Klinicheskaya xarakteristika 1007 bol`ny`x tyazheloj SARS-CoV-2 pnevmoniej, nuzhdavshixsya v respiratornoj podderzhke [Clinical characteristics of 1007 intensive care unit patients with SARS-COV-2 pneumonia]. Klin farmakol ter. 29 (2): 21-29 DOI 10.32756/0869-5490-2020-2-21-29
Pal`man A.D., Andreev D.A., Suchkova S.A. 2020. Nemaya gipoksemiya u pacienta s tyazheloj SARS-CoV-2-pnevmoniej [Silent hypoxemia in a patient with severe SARS-CoV-2 pneumonia]. Sechenovskij vestnik. 11 (2): 87–91. https://doi.org/10.47093/2218-7332.2020.11.2.87-91
Xodosh E.M., Griff S.L., Ivaxno I.V. 2020. Kliniko-luchevy`e i morfologicheskie osobennosti COVID-19 associirovannoj pnevmonii v dinamike zabolevaniya [Clinical radiation and morphological features of COVID-19 associated pneumonia in the dynamics of the disease]. Aktual`ny`e problemy` mediciny`. 43 (4): 473–489. DOI: 10.18413/2687-0940-2020-43-4-473-489.
Xodosh E.M., Efremova O.A., Xoroshun D.A. 2014. Simptom «matovogo stekla»: kliniko-luchevaya parallel` [Ground-glass opasity: clinical – X-Ray parallel]. Nauchny`e vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Medicina. Farmaciya. 18 (189): 11–23.
Chuchalin A.G. 2017. Respiratornaya medicina [Respiratory medicine]. Tom 1. 1303 s.
Acute Respiratory Distress Syndrome Network, Brower R.G., Matthay M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A. 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342 (18): 1301–1308. doi: 10.1056/NEJM200005043421801.
Amato M.B., Meade M.O., Slutsky A.S., Brochard L., Costa E.L., Schoenfeld D.A., Stewart T.E., Briel M., Talmor D., Mercat A., Richard J.C., Carvalho C.R., Brower R.G. 2015. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 372 (8): 747–55. doi: 10.1056/NEJMsa1410639.
Attaway A.H., Scheraga R.G., Bhimraj A., Biehl M., Hatipoğlu U. 2021. Severe Covid-19 pneumonia: pathogenesis and clinical management. BMJ. 372: n436. doi: 10.1136/bmj.n436.
Barrot L., Asfar P., Mauny F., Winiszewski H., Montini F., Badie J., Quenot J.P.,
Pili-Floury S., Bouhemad B., Louis G., Souweine B., Collange O., Pottecher J., Levy B., Puyraveau M., Vettoretti L., Constantin J.M., Capellier G. 2020. LOCO2 Investigators and REVA Research Network. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N. Engl. J. Med. 382 (11): 999–1008. doi: 10.1056/NEJMoa1916431.
Brochard L., Slutsky A., Pesenti A. 2017. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am. J. Respir. Crit. Care. Med. 195 (4): 438–442. doi: 10.1164/rccm.201605-1081CP. PMID: 27626833.
Brower R.G., Lanken P.N., MacIntyre N., Matthay M.A., Morris A., Ancukiewicz M., Schoenfeld D., Thompson B.T. 2004. National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 351 (4): 327–36. doi: 10.1056/NEJMoa032193.
Carteaux G., Millán-Guilarte T., De Prost N., Razazi K., Abid S., Thille A.W., Schortgen F., Brochard L., Brun-Buisson C., Mekontso Dessap A. 2016. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care. Med. 44 (2): 282–90. doi: 10.1097/CCM.0000000000001379.
Chatburn R.L., van der Staay M. 2019. Driving Pressure or Tidal Pressure: What a Difference a Name Makes. Respir Care. 64 (9): 1176–1179. doi: 10.4187/respcare.07233.
Chedid M., Waked R., Haddad E., Chetata N., Saliba G., Choucair J. 2021. Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. J. Infect. Public. Health. 14 (5): 570–576. doi: 10.1016/j.jiph.2021.02.001.
Chen L., Del Sorbo L., Grieco D.L., Junhasavasdikul D., Rittayamai N., Soliman I., Sklar M.C., Rauseo M., Ferguson N.D., Fan E., Richard J.M., Brochard L. 2020. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am. J. Respir. Crit. Care. Med. 201 (2): 178–187. doi: 10.1164/rccm.201902-0334OC.
Chu D.K., Kim L.H., Young P.J., Zamiri N., Almenawer S.A., Jaeschke R., Szczeklik W., Schünemann H.J., Neary J.D., Alhazzani W. 2018. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 391 (10131): 1693–1705. doi: 10.1016/S0140-6736(18)30479-3.
Fan E., Beitler J.R., Brochard L., Calfee C.S., Ferguson N.D., Slutsky A.S., Brodie D. 2020. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med. 8 (8): 816–821. doi: 10.1016/S2213-2600(20)30304-0. Epub 2020 Jul 6.
Ferrando C., Suarez-Sipmann F., Mellado-Artigas R., Hernández M., Gea A., Arruti E., Aldecoa C., Martínez-Pallí G., Martínez-González M.A., Slutsky A.S., Villar J. 2020. COVID-19 Spanish ICU Network. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 46 (12): 2200–2211. doi: 10.1007/s00134-020-06192-2.
Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello D. 2020. COVID-19 Does Not Lead to a «Typical» Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care. Med. 201 (10): 1299–1300. doi: 10.1164/rccm.202003-0817LE.
Grasso S., Mirabella L., Murgolo F., Di Mussi R., Pisani L., Dalfino L., Spadaro S., Rauseo M., Lamanna A., Cinnella G. 2020. Effects of Positive End-Expiratory Pressure in «High Compliance» Severe Acute Respiratory Syndrome Coronavirus 2 Acute Respiratory Distress Syndrome. Crit. Care. Med. 48 (12): e1332-e1336. doi: 10.1097/CCM.0000000000004640.
Greenhalgh T., Knight M., A'Court C., Buxton M., Husain L. 2020. Management of post-acute covid-19 in primary care. BMJ. 11 (370): m3026. doi: 10.1136/bmj.m3026.
Grieco D.L., Menga L.S., Cesarano M., Rosà T., Spadaro S., Bitondo M.M., Montomoli J., Falò G., Tonetti T., Cutuli S.L., Pintaudi G., Tanzarella E.S., Piervincenzi E., Bongiovanni F., Dell'Anna A.M., Delle Cese L., Berardi C., Carelli S., Bocci M.G., Montini L., Bello G., Natalini D., De Pascale G., Velardo M., Volta C.A., Ranieri V.M., Conti G., Maggiore S.M., Antonelli M.; COVID-ICU Gemelli Study Group. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA. 2021 May 4; 325 (17): 1731–1743. doi: 10.1001/jama.2021.4682.
Guérin C., Reignier J., Richard J.C., Beuret P., Gacouin A., Boulain T., Mercier E., Badet M., Mercat A., Baudin O., Clavel M., Chatellier D., Jaber S., Rosselli S., Mancebo J., Sirodot M., Hilbert G., Bengler C., Richecoeur J., Gainnier M., Bayle F., Bourdin G., Leray V., Girard R., Baboi L., Ayzac L. 2013. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368 (23): 2159–68. doi: 10.1056/NEJMoa1214103.
Ho A.T.N., Patolia S., Guervilly C. 2020. Neuromuscular blockade in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. J. Intensive Care. 8: 12. doi: 10.1186/s40560-020-0431-z.
Hu B., Guo H., Zhou P., Shi Z.L. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19 (3): 141–154. doi: 10.1038/s41579-020-00459-7.
Karbing D.S., Panigada M., Bottino N., Spinelli E., Protti A., Rees S.E., Gattinoni L. 2020. Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Crit. Care. 24 (1): 111. doi: 10.1186/s13054-020-2834-6.
Mascheroni D., Kolobow T., Fumagalli R., Moretti M.P., Chen V., Buckhold D. 1988. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 15 (1): 8–14. doi: 10.1007/BF00255628.
Meade M.O., Cook D.J., Guyatt G.H., Slutsky A.S., Arabi Y.M., Cooper D.J., Davies A.R., Hand L.E., Zhou Q., Thabane L., Austin P., Lapinsky S., Baxter A., Russell J., Skrobik Y., Ronco J.J., Stewart T.E. 2008 Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 299 (6): 637–45. doi: 10.1001/jama.299.6.637.
Pan C., Chen L., Lu C., Zhang W., Xia J.A., Sklar M.C., Du B., Brochard L., Qiu H. 2020. Lung Recruitability in COVID-19-associated Acute Respiratory Distress Syndrome: A Single-Center Observational Study. Am. J. Respir. Crit. Care. Med. 201 (10): 1294–1297. doi: 10.1164/rccm.202003-0527LE.
Petrilli C.M., Jones S.A., Yang J., Rajagopalan H., O'Donnell L., Chernyak Y., Tobin K.A., Cerfolio R.J., Francois F., Horwitz L.I. 2020. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 22: 369:m1966. doi: 10.1136/bmj.m1966.
Schmidt M., Hajage D., Lebreton G., Monsel A., Voiriot G., Levy D., Baron E., Beurton A., Chommeloux J., Meng P., Nemlaghi S., Bay P., Leprince P., Demoule A., Guidet B., Constantin J.M., Fartoukh M., Dres M., Combes A. 2020. Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université; Paris-Sorbonne ECMO-COVID investigators. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 8 (11): 1121–1131. doi: 10.1016/S2213-2600(20)30328-3.
Siemieniuk R.A.C., Chu D.K., Kim L.H., Güell-Rous M.R., Alhazzani W., Soccal P.M., Karanicolas P.J., Farhoumand P.D., Siemieniuk J.L.K., Satia I., Irusen E.M., Refaat M.M., Mikita J.S., Smith M., Cohen D.N., Vandvik P.O., Agoritsas T., Lytvyn L., Guyatt G.H. 2018. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 363: k4169. doi: 10.1136/bmj.k4169.
Slutsky A.S., Ranieri V.M. 2013. Ventilator-induced lung injury. N. Engl. J. Med. 369 (22): 2126–2136. doi: 10.1056/NEJMra1208707. Erratum in: N. Engl. J. Med. 2014 Apr 24; 370 (17): 1668–9.
Starr T.N., Greaney A.J., Addetia A., Hannon W.W., Choudhary M.C., Dingens A.S., Li J.Z., Bloom J.D. 2021. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science. 371 (6531): 850–854. doi: 10.1126/science.abf9302.
Tobin M.J., Laghi F., Jubran A. 2020. P-SILI is not justification for intubation of COVID-19 patients. Ann Intensive Care. 10 (1): 105. doi: 10.1186/s13613-020-00724-1.
Tzotzos S.J., Fischer B., Fischer H., Zeitlinger M. 2020. ARDS incidence and outcomes in hospitalized COVID-19 patients: a global literature review. Crit. Care. 24: 516. doi: 10.1186 / s13054-020-03240-7 pmid: 32825837
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. 2020. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 17; 323 (11): 1061–1069. doi: 10.1001/jama.2020.1585. Erratum in: JAMA. 2021 Mar 16; 325 (11): 1113.
Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.Y., Wang Q., Zhou H., Yan J., Qi J. 2020. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 181 (4): 894–904.e9. doi: 10.1016/j.cell.2020.03.045.
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti A.B., Suzumura É.A., Laranjeira L.N., Paisani D.M., Damiani L.P., Guimarães H.P., Romano E.R., Regenga M.M., Taniguchi L.N.T., Teixeira C., Pinheiro de Oliveira R., Machado F.R., Diaz-Quijano F.A., Filho M.S.A., Maia I.S., Caser E.B., Filho W.O., Borges M.C., Martins P.A., Matsui M., Ospina-Tascón G.A., Giancursi T.S., Giraldo-Ramirez N.D., Vieira S.R.R., Assef M.D.G.P.L., Hasan M.S., Szczeklik W., Rios F., Amato M.B.P., Berwanger O., Ribeiro de Carvalho C.R. 2017. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 318 (14): 1335–1345. doi: 10.1001/jama.2017.14171.
Yuki K., Fujiogi M., Koutsogiannaki S. 2020. COVID-19 pathophysiology: A review. Clin Immunol. 215: 108427. doi: 10.1016/j.clim.2020.108427.